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Nanotechnology is beginning to play a major role in the devel-
opment of new therapeutic modalities. Currently, over 100 
drugs based on nanomaterials are in clinical trials or approved 

for therapeutic use1. These structures are promising because of their 
multifunctionality, which directly relates to their relatively large size 
and often complex architectures when compared with conventional 
small molecules or biologics. However, due to this complexity, little 
attention has been paid to how structural changes inform biologi-
cal activity. Consider, for example, spherical nucleic acids (SNAs), 
which are made by chemically arranging short sequences of DNA 
or RNA around a nanoparticle core (Fig. 1a)2,3. SNAs exhibit prop-
erties that are substantively different from the short, linear oligo-
nucleotides that comprise them, including the ability to actively 
cross mammalian cell membranes without the need for transfec-
tion reagents, a resistance to nuclease degradation, and the ability 
to carry large and complex cargo (such as oligonucleotides and  
peptides) into many cell types4–7.

These properties make SNAs an attractive candidate in cancer 
immunotherapy, as structures with dual functionality can be rap-
idly prepared from lipids, oligonucleotide adjuvants and peptide 
antigens. When delivered to antigen presenting cells (APCs), SNAs 
activate the immune system and, in a lymphoma model, show supe-
rior activity compared with the same free antigen and linear oligo-
nucleotides5. However, the modularity of an SNA allows for a large 
number of possible designs and compositions, and identifying the 
nanoparticle architectures best for inducing multiple aspects of cel-
lular immune responses, such as potency, selectivity and efficacy, 
remains a challenge. Furthermore, understanding how variations in 
SNA structure influence any individual step in generating immune 

responses at the cellular level (for example, Toll-like receptor (TLR) 
activation and antigen presentation) is also challenging, particularly 
if the dependence on activity is nonlinear across multiple variables.

Here, we describe a new approach for synthesizing a library of 
SNAs that are qualitatively similar but structurally distinct, in con-
junction with a mass spectrometry-based screening protocol that 
can rapidly and quantitatively determine the ability of an SNA struc-
ture to activate the TLR9 pathway. First, we show how this method-
ology can be used to make and screen ~1,000 SNA architectures 
(800 of which are unique). In addition, we describe how machine 
learning models can be trained with this data and subsequently used 
to accurately predict the TLR9 stimulatory activity of SNAs based on 
structural features. Significantly, these models provide a ranking of 
the order of importance of 11 structural parameters, as well as SNA 
drug concentration. The library screen and analysis by machine 
learning revealed several non-intuitive and nonlinear consequences 
of structural variation on TLR9 activation; identification of these 
relationships was made possible only by the parallel examination 
of multiple variables. Collectively, these insights have important 
implications in the design of SNA-based therapeutics. Additionally, 
since this methodology can be extended to other nanotherapeutics, 
this work points towards a new way of designing and optimizing  
nanomedicines for a wide variety of uses.

Results and discussion
Modular design of SNAs. Immunostimulatory SNAs consist of 
three modular components—the nanoparticle core, oligonucle-
otide shell and peptide antigen—each of which can be arranged in 
a variety of configurations5. To establish an appropriate library for  

Exploration of the nanomedicine-design space 
with high-throughput screening and machine 
learning
Gokay Yamankurt   1,2,3,7, Eric J. Berns   4,7, Albert Xue   5, Andrew Lee   5*, Neda Bagheri   5*, 
Milan Mrksich   3,4,6* and Chad A. Mirkin   2,3*

Only a tiny fraction of the nanomedicine-design space has been explored, owing to the structural complexity of nanomedicines 
and the lack of relevant high-throughput synthesis and analysis methods. Here, we report a methodology for determining struc-
ture–activity relationships and design rules for spherical nucleic acids (SNAs) functioning as cancer-vaccine candidates. First, 
we identified ~1,000 candidate SNAs on the basis of reasonable ranges for 11 design parameters that can be systematically and 
independently varied to optimize SNA performance. Second, we developed a high-throughput method for making SNAs at the 
picomolar scale in a 384-well format, and used a mass spectrometry assay to rapidly measure SNA immune activation. Third, 
we used machine learning to quantitatively model SNA immune activation and identify the minimum number of SNAs needed to 
capture optimum structure–activity relationships for a given SNA library. Our methodology is general, can reduce the number 
of nanoparticles that need to be tested by an order of magnitude, and could serve as a screening tool for the development of 
nanoparticle therapeutics.

NAtuRE BioMEdiCAL ENGiNEERiNG | VOL 3 | APRIL 2019 | 318–327 | www.nature.com/natbiomedeng318

mailto:andrew.lee3@northwestern.edu
mailto:n-bagheri@northwestern.edu
mailto:milan.mrksich@northwestern.edu
mailto:chadnano@northwestern.edu
http://orcid.org/0000-0003-2017-9848
http://orcid.org/0000-0002-2203-0847
http://orcid.org/0000-0001-8561-9416
http://orcid.org/0000-0002-7665-1999
http://orcid.org/0000-0003-0146-4627
http://orcid.org/0000-0002-4964-796X
http://orcid.org/0000-0002-6634-7627
http://www.nature.com/natbiomedeng


ArticlesNATure BiOmedicAl eNgiNeeriNg

high-throughput evaluation, we focused on 11 properties across 
these components (Fig. 1b). We used 1,2-dioleoyl-sn-glycero-
3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phospho-
ethanolamine (DOPE) to form liposomes that are biocompatible, 
straightforward to synthesize and capable of encapsulating the anti-
gen8. We focused on two liposome core sizes with average diam-
eters of ~70 and ~100 nm that were made from DOPC or a mixture 
of 80% DOPC and 20% DOPE, respectively. The size of the SNA 
can influence its rate of cellular uptake, and inclusion of DOPE 
in the liposomes is believed to affect the peptide release rate and  
endosomal escape, which is important for peptide processing9,10.

The oligonucleotide shell serves two roles. It facilitates cellu-
lar uptake and serves as the adjuvant, which activates the innate 
immune system in a sequence-specific manner5. The oligonucle-
otides used in the design of SNAs in the library varied in five 
ways: sequence, backbone chemistry, conjugation chemistry to 
the liposome, site of lipid functionalization and surface density 
of presentation by SNAs (albeit over a narrow range). We chose a 
CpG DNA oligonucleotide (ODN1826) known to activate mouse 
TLR9, as well as an inactive control where the CpG motif is 
inverted to GpC11,12. TLR9 is an endosomal protein that recognizes 
unmethylated CpG oligonucleotides associated with bacteria and 
viruses13. To explore the importance of backbone composition, 
we synthesized linear oligonucleotides with either phosphodi-
ester (PO) or phosphorothioate (PS) backbones, since phospho-
rothioate oligonucleotides are known to induce higher immune 
activation, but SNAs comprising phosphodiester backbones pres-
ent activities comparable to phosphorothioate structures5,14. We 
evaluated distinct strategies for conjugating oligonucleotides 
to the nanoparticles by preparing structures with cholesterol or 
DOPE, both of which insert into the liposomal cores and can be 
chemically attached to the 3′ or 5′ ends of the oligonucleotides. 

Finally, since oligonucleotide density is known to influence cel-
lular uptake and protein binding of SNAs, we evaluated the oligo-
nucleotide surface density at 0.5, 1 and 2 pmol cm−2 (referred to as 
1×, 2× and 4×, respectively)15,16. The 4× structure represents the 
upper limit of what is synthetically viable via our high-throughput  
procedures at present.

As our test case, we chose the OVA257–264 peptide from ovalbu-
min—a well-studied model antigen. Since peptide properties can 
vary dramatically with amino acid composition, we also tested a 
peptide antigen from the E7 protein of human papillomavirus17. To 
study how the release rate of the antigen influences nuclear factor 
kappa light chain enhancer of activated B cells (NF-κB) activation, 
we evaluated SNAs wherein the antigen was either encapsulated 
within the SNA architecture or chemically conjugated to oligonu-
cleotides complementary to the CpG oligonucleotides and associ-
ated with SNAs through nucleic acid hybridization. As a control, 
we investigated how the addition of a complement affects TLR9 
stimulation.

We synthesized and tested three subsets of SNAs (OVA-
encapsulated SNAs, E7-encapsulated SNAs and surface-presented 
OVA SNAs) representing the key possible combinations of the 
parameters, with a few synthesis-limited exceptions noted below 
regarding lipid composition, oligonucleotide surface density and 
surface-conjugated peptide antigen (see Methods and Table 1). 
Variation across the 11 structural features—spanning the nanopar-
ticle core, oligonucleotide chemistry, surface presentation of oligo-
nucleotides and incorporation of antigen—led to the design of a 
library with 960 total SNAs, 800 of which are unique.

High-throughput screening of SNA libraries. To enable the 
screening of SNA libraries, we developed a high-throughput assay 
for the rapid and quantitative measurement of cellular responses 
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to the SNAs (Fig. 2a). We cultured RAW-Blue macrophages in 
384-well plates and treated each well with a distinct SNA at 4 oli-
gonucleotide concentrations between 1 nM and 1 μM (each sepa-
rated by a factor of 10). RAW-Blue cells are engineered to secrete 
secreted embryonic alkaline phosphatase (SEAP) on activation of 
NF-κB (a major transcription factor that is activated by TLR9 sig-
nalling), as well as other signals, to regulate the immune response. 

We collected the culture media and determined the concentration 
of SEAP using SAMDI (self-assembled mono layers for MALDI, 
where MALDI stands for matrix-assisted laser desorption/ion-
ization) mass spectrometry—a label-free assay for high-through-
put, quantitative analysis of enzymatic activity18–21. SAMDI uses 
monolayers presenting a selective capture chemistry against 
a background of non-binding tri(ethylene glycol) groups to  
isolate substrates and products from a complex mixture21,22. 
Subsequent analysis of the monolayers by MALDI mass spec-
trometry (MALDI-MS) quantitates the amount of substrate and 
product, which is a direct measure of the enzyme concentration 
(Fig. 2b,c). Here, we mixed the media containing SEAP with a 
phosphorylated peptide substrate, captured the substrate and 
dephosphorylated product on monolayers and then analysed the 
samples by SAMDI (see Methods for experimental details). We 
chose this technology for its ability to quantify enzyme activities 
at high throughput, without dependence on the common optical 
methods, which can be negatively affected by the light scattering 
and absorbance of the nanoparticles. These artefacts are difficult 
to correct because of their dependence on nanoparticle properties 
such as size, concentration and aggregation. Furthermore, SAMDI 
is compatible with small sample volumes for analysis, thereby 
reducing the amounts of SNAs, cells and reagents necessary for 
evaluation (by around sixfold compared with the amounts used  
in optical assays).

With this assay, we measured the responses to 960 SNAs at 4 con-
centrations and with 2 biological replicates, and acquired 2 SAMDI 
spectra for each sample. Along with standards and controls, more 
than 8,500 cell culture wells were used, and more than 17,000 
SAMDI spectra were analysed. These data revealed many insights 
into the importance of each structural feature, and how the combi-
nations of features impact immune activation. Below, we highlight 
some of the most prominent trends.

SNAs induce higher immune activation than linear oligonucle-
otides. Varying the design parameters of SNAs induced a broad 
range of immune activation (Figs. 3a,d shows the encapsulated 
OVA subset with the active CpG oligonucleotide sequence, and 
Supplementary Fig. 1 shows the encapsulated E7 subset). Almost 
all of the SNAs with the active oligonucleotide sequence outper-
formed the linear phosphodiester oligonucleotide. Additionally,  
many SNAs, including those with a phosphodiester backbone, were 
more potent than the linear oligonucleotide with the phosphoro-
thioate backbone.

Table. 1 | SNA design space: the total design space investigated in this study, divided into three subsets

SNA property Encapsulated oVA subset  
(336 SNAs)

Encapsulated E7 subset  
(336 SNAs)

Conjugated oVA subset 
(288 SNAs)

Oligonucleotide conjugation chemistry Cholesterol DOPE Cholesterol DOPE DOPE

Antigen OVA OVA E7 E7 OVA

Antigen location Core Core Core Core Complement

Core diameter (nm) 70 and 100 70 and 100 70 and 100 70 and 100 70 and 100

Lipid composition (%DOPC) 80 and 100% 100% 80 and 100% 100% 100%

Antigen density 0×, 1× and 10× 0×, 1× and 10× 0×, 1× and 10× 0×, 1× and 10× 0, 50 and 100%

Oligonucleotide sequence CpG and GpC CpG and GpC CpG and GpC CpG and GpC CpG and GpC

Oligonucleotide conjugation terminus 5′ and 3′ 5′ and 3′ 5′ and 3′ 5′ and 3′ 5′ and 3′
Oligonucleotide backbone PO and PS PO and PS PO and PS PO and PS PO and PS

Oligonucleotide density 1× and 2× 1×, 2× and 4× 1× and 2× 1×, 2× and 4× 1×, 2× and 4×

Complement density NA NA NA NA 0, 50 and 100%

NA, not applicable; PO, phosphodiester; PS, phosphorothioate.
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Fig. 2 | SAMdi assay workflow. a, Assay used to evaluate the structure–
activity relationships between SNA properties and TLR9 activation of 
APCs. Libraries of SNAs are incubated with RAW-Blue macrophages 
in 384-well plates. The macrophages have been engineered to secrete 
SEAP into the media. After ~16 h, the media is transferred, processed and 
mixed with a phosphorylated substrate. The solution is transferred to 
SAMDI plates with 1,536 spot arrays of monolayers presenting maleimides 
to selectively capture the substrate and product by a maleimide–thiol 
reaction. b, An example SAMDI spectrum showing the immobilized 
substrate and product. Performing MALDI-MS on the self-assembled 
monolayers (that is, SAMDI) results in mass spectra containing 
quantitative information on the relative amounts of substrate and product 
(that is, the extent of dephosphorylation). c, An example standard curve 
used to convert the SAMDI spectral data for the library into  
SEAP concentration.
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Conjugation chemistry of oligonucleotide–liposome association 
significantly affects immune activation by SNAs. With 11 design 
parameters under investigation, we sought to identify the relative 
importance of design choices on immune activation. Multifactor 
analysis of variance (ANOVA) (Supplementary Table 1) revealed, 
unsurprisingly, that oligonucleotide concentration and oligonucle-
otide sequence (that is, active or control) heavily influenced acti-
vation. After sequence, the feature that had the greatest impact on 
immune activation was the lipid moiety conjugated to the oligonu-
cleotide for liposome attachment. Cholesterol conjugation resulted 
in higher levels of immune activation than DOPE conjugation 
(P = 4.8 × 10−16). However, SNAs with cholesterol-conjugated oligo-
nucleotides without CpG motifs also induced similarly high levels 
of activation at the 1 μM oligonucleotide concentration ([SEAP]: 
798 and 747 ng ml−1 for active and inactive, respectively; Fig. 3b), 
indicating a sequence-independent activation of TLR9. The linear 
oligonucleotide does not activate TLR9; therefore, these results 
indicate that these SNAs may activate NF-κB via another mecha-
nism. One possible explanation is that cholesterol groups delivered 
to cells on the SNA induce additional activation. Our cholesterol 
conjugation chemistry utilizes carbamates, which can be cleaved 
by esterases, including sterol O- acyltransferases23. Any poten-
tially released cholesterol, which is known to activate the unfolded 
protein response pathway in macrophages, may also induce  
NF-κB activation24.

In contrast, SNAs without CpG-containing oligonucleotides  
conjugated to DOPE (instead of cholesterol) lead to dramati-
cally lower secretion of SEAP compared with their cholesterol- 
conjugated counterparts (P < 1 × 10−16; Fig. 3c). We conclude  
that DOPE conjugation provides a way to synthesize SNAs that 
trigger an innate immune response exclusively through activa-
tion of TLR9. However, the combination of TLR9 stimulation and  
non-specific activation by SNAs with cholesterol-conjugated oligo-
nucleotides may be advantageous for inducing a greater overall 
immune response.

The conjugation terminus of the oligonucleotide influences the 
immune activation in a conjugation chemistry-dependent man-
ner. Because of the dominant effects of conjugation chemistry, we 
analysed the remaining SNA properties separately for SNAs with 
cholesterol- and DOPE-conjugated oligonucleotides. Interestingly, 
we observed differences in the preferred conjugation terminus when 
different conjugation chemistries were used (Fig. 3e,f). With choles-
terol conjugation, 5′-conjugated SNAs showed significantly higher 
activity than 3′-conjugated SNAs (OVA subset: P < 2.2 × 10−16 for all 
concentrations; mean [SEAP]: 566 and 439 ng ml−1 at 100 nM for  
5′ and 3′ conjugation, respectively); however, DOPE-conjugated 
SNAs did not show a difference with conjugation terminus 
(OVA subset: P = 1 for all concentrations; mean [SEAP]: 324 and 
330 ng ml−1 at 100 nM for 5′ and 3′ conjugation, respectively). 
Furthermore, conjugation from the 5′ terminus did not lead to loss 
of immune activation for either conjugation chemistry, which con-
tradicts reports that modifications at the 5′ end inactivate the TLR9 
activity of linear CpG oligonucleotides25,26.

The phosphorothioate oligonucleotide backbone increases 
immune activation compared with the phosphodiester back-
bone. Similar to well-known trends with linear oligonucleotides, 
the oligonucleotide backbone also influenced the immunostimula-
tory activity of the SNAs (Supplementary Table 1 and Fig. 3g,h)14. 
SNAs with phosphorothioate backbones generally outperformed 
their phosphodiester counterparts (P = 5 × 10−9 for DOPE- and 
P = 2.7 × 10−4 for cholesterol-conjugated SNAs). However, a more 
pronounced dependence on oligonucleotide backbone was observed 
with DOPE-conjugated SNAs than with cholesterol-conjugated 
SNAs. For DOPE-conjugated SNAs, the mean SEAP concentrations 

were 191 and 463 ng ml−1 for phosphodiester and phosphorothioate 
backbones, respectively, whereas for cholesterol-conjugated SNAs, 
they were 431 and 573 ng ml−1 (all at 100 nM).

In contrast, at the highest concentration of 1 μM, SNAs with phos-
phodiester oligonucleotides outperformed their phosphorothioate 
counterparts. Notably, the activity induced by DOPE-conjugated 
SNAs with phosphorothioate oligonucleotides consistently 
decreased when the oligonucleotide concentration increased from 
100 nM to 1 μM. The DOPE-conjugated phosphorothioate linear 
oligonucleotide, but not the phosphodiester backbone, showed a 
similar reduction in activity at 1 μM (Fig. 3h), suggesting that this 
behaviour is due to the specific stimulatory properties of the DOPE-
conjugated oligonucleotide.

These results lead us to conclude that DOPE-conjugated oligo-
nucleotides with phosphorothioate backbones provide an advan-
tage if greater potency is desired. Phosphorothioate backbones have 
the added benefit of resistance to nuclease degradation in vivo27. 
However, these results also show that SNAs with oligonucleotides 
composed of phosphodiester backbones can achieve similar levels 
of activation when present at higher concentrations. While class  
B CpG oligonucleotides are less effective with phosphodiester back-
bones, using SNAs with phosphodiester oligonucleotides may be 
worth the loss in potency because of the reduction in toxicity and 
cost, since the SNA structure may provide sufficient resistance to 
nuclease activity28–30.

Oligonucleotide density on the surface of the nanoparticle has 
a small and variable impact on immune activation. Surprisingly, 
there was not a strong or consistent trend in how oligonucleotide 
density affected activity, with neither the highest nor lowest densi-
ties showing the best activity. In previous studies, SNAs with higher 
oligonucleotide densities led to higher biological activity in cellular 
uptake and RNAse H-mediated degradation of messenger RNA; 
however, the nanoparticle designs in those studies were limited to 
gold cores, and used different core sizes and oligonucleotide den-
sities compared with this study15,16. From these observations, we 
conclude that the choice of oligonucleotide density for these con-
structs over this narrow density range should be based on other 
considerations, such as stability in vivo, which is inextricably linked  
to potency.

Core diameter and lipid composition influence the immune acti-
vation of SNAs in an encapsulated peptide-specific manner. In 
both encapsulated SNA subsets, the lipid composition generally did 
not have a significant impact on activity, as determined by ANOVA 
(Supplementary Table 1), except in one particular context discussed 
below. Additionally, core diameter was not a significant parameter 
in the encapsulated OVA subset, whereas it had a significant impact 
with encapsulated E7 group.

Since all combinations of parameters evaluated were both with 
and without peptide, we were able to isolate the effects of peptide 
encapsulation by comparing pairs of SNAs with identical proper-
ties except for the amount of peptide encapsulation. We subtracted 
the SEAP concentration of the SNA without peptide from the SNA 
with the highest peptide concentration (Fig. 4a). This analysis 
revealed that core diameter and lipid composition were influential 
when E7, but not OVA, was encapsulated. Specifically, for the E7 
subset, SNAs with 100 nm cores containing peptide induced higher 
levels of NF-κB activation (P = 5.7 × 10−5), and the magnitude of 
this effect also depended on lipid composition (Fig. 4b). Within 
the subset of SNAs with cholesterol-conjugated oligonucleotides 
on 100 nm cores, the SNAs with 100% DOPC cores showed higher 
immune activation than those with 80% DOPC and 20% DOPE 
cores (P = 0.0011; Fig. 4b). We observed no dependence between 
the presence of antigen and immune activation when the antigen 
was OVA (Fig. 4c).
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These results clearly illustrate that peptide encapsulation can 
impact the ability of SNAs to activate TLR9 and reveal crosstalk 
between the molecular components of SNAs intended to induce 
innate or adaptive immunity. Unlike oligonucleotides, the physico-
chemical properties of peptides vary dramatically with sequence, 
which can affect their interaction with the rest of the SNA structure. 

For example, the differences in the isoelectric points of the peptides, 
which are 5.7 and 8.8 for the E7 and OVA peptides, respectively, 
result in different net charges for the peptides, which could affect 
their interaction with the positively charged liposome core. We con-
clude that the interactions between liposomes and peptides must be 
taken into account when designing and evaluating nanomedicines, 
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as they can lead to large shifts in the immune activation of SNAs, 
especially at high levels of peptide encapsulation.

Effects of hybridization of complementary strands onto SNAs. 
The versatility of the SNA architecture allows for alternative methods 
of incorporating the antigen into the structure, apart from loading 
in the lipid core. We investigated one such alternative—conjugation 
of the antigen to a complementary oligonucleotide, which is then 
hybridized to a lipid-anchored oligonucleotide. As a control, we 
also synthesized SNAs with the complementary oligonucleotide but 
without peptide conjugation. In these SNAs, the CpG-containing 
oligonucleotide is double stranded, and thus is differentiated from 
SNAs with only single-stranded oligonucleotides. In this conjugated 
OVA subset, we used DOPE-conjugated oligonucleotides to prevent 
the non-specific NF-κB activation by cholesterol-conjugated SNAs 
described above.

Our results show that SNAs synthesized with this strategy shared 
some trends with their single-stranded counterparts. After oligo-
nucleotide sequence, the most influential property on immune acti-
vation was backbone chemistry, with phosphorothioate backbones 
outperforming phosphodiester versions (Fig. 5a). Again, we found 
that the core properties of lipid composition and core diameter were 
not significant.

Interestingly, for the SNAs with phosphorothioate oligonucle-
otides, addition of the complement oligonucleotide (either to half 
or all of the anchored oligonucleotides) did not change immune 
activation at concentrations of 100 nM or 1 μM, respectively  
(Fig. 5b). Furthermore, there was no difference between SNAs com-
posed of the complement with and without conjugated peptide. 
However, at low concentrations (10 nM), higher complement densi-
ties led to higher immune activation (Fig. 5c). This effect may be a 
function of SNA uptake, where higher complement densities create 
higher charge densities on the surface and increase the uptake of 
SNAs, which in turn leads to higher immune activation. In contrast, 
complementation strongly reduced the activity of phosphodiester-
backbone SNAs at the highest concentration tested (Fig. 5d). A pos-
sible explanation for the decreased activity in duplexed SNAs is that 

the duplexing interferes with the oligonucleotide interaction with 
TLR9; however, it is not clear why the interaction with TLR9 would 
be different with phosphodiester and phosphorothioate backbones. 
These results suggest that the strategy of including antigens by 
duplexing antigen-conjugated complementary oligonucleotides is 
effective with phosphorothioate SNAs, without concern for losing 
activation of TLR9.

Supervised machine learning captures nonlinearity of property 
interactions and confirms trends in the biological importance 
of properties. Because many of the parameters studied were inter-
dependent, we utilized supervised machine learning models and 
evaluated their performance to better understand SNA properties. 
We applied supervised models to automatically predict immune 
activity from SNA properties with the expectation that properties 
relevant to immune activation would improve a model’s predictive 
capability31,32. These models differ from traditional data analysis in 
that instead of explicitly programming them with formulas, they 
‘learn’ from the data on their own. Specifically, we employed mul-
tiple linear regression, logistic regression and nonlinear XGBoost 
to fit training data, and cross-validation of test data was conducted 
using the Q2 statistic. Q2 quantifies the accuracy of the predicted 
SEAP concentrations against measured values, and ranges from −∞ 
to 1, where 0 indicates no predictive power (equivalent to predicting 
the mean) and 1 indicates perfect prediction33,34.

We trained each model with all combinations of properties (that 
is, two properties at a time, three properties at a time, and so on) 
and analysed their Q2 performance. As additional properties were 
added to the models, the Q2 performance increased, plateauing for 
most models and decreasing in the XGBoost model for the surface-
presented OVA subset (Fig. 6a,b). Since clear nonlinear trends 
were observed in the data, as described above, the model perfor-
mance increased with the nonlinearity of the model in both subsets 
(mean increase from 0.53 for the linear model to 0.83 for XGBoost). 
Analysis of the most predictive SNA property combinations dem-
onstrates that highly predictive properties remain significant and 
informative as more properties are introduced into the model 
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(Supplementary Fig. 2a,b). In addition, the order of importance of 
the properties was largely consistent between the encapsulated OVA 
and surface-conjugated OVA subsets, suggesting that the ordering is 
robust regardless of peptide localization. To ensure that these trends 
are not artefacts, we repeated this analysis with randomized data. Q2 
values for all of these models were zero or below, indicating that the 
predictions are specific to our data (Supplementary Fig. 3). In addi-
tion, we calculated the standard deviations of the error between the 
predicted and actual values for the XGBoost to further validate the 
model (Supplementary Fig. 4). The standard deviations were in the 
range of 10–30 ng ml−1, which is very small compared with the range 
of activities that exceeds 1,000 ng ml−1.

For the encapsulated OVA and surface-presented OVA sub-
sets, the Q2 value stopped increasing beyond five and four prop-
erties, respectively (Fig. 6a). At first glance, one might conclude 
that only these highly predictive properties are relevant; however, 

when repeating this analysis with fixed values for sequence and 
concentration (the two features with the greatest impact), the Q2 
values stopped increasing after another five properties were added  
(Fig. 6a), indicating that formerly seemingly non-predictive proper-
ties do, in fact, influence immune activation (Supplementary Fig. 2c).  
Taken together, these properties, which appear non-influential in  
a global context, become impactful in a restricted design space.

Capturing the maximum structure–activity relationship with 
minimum SNA synthesis and evaluation. Next, we investigated 
whether a similar Q2 level is attainable with fewer, randomly 
selected SNA designs. This question is particularly relevant when 
synthesis and evaluation of full libraries are impractical, but when 
exploration of a large design space is desired. In this case, one could 
synthesize a random subset that would capture the most important 
trends and then suggest additional candidates to evaluate. To this 
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Fig. 5 | trends in immune activation due to hybridization. a, SEAP concentrations for all active-sequence SNAs in the surface-presented OVA subset. 
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end, we simulated this process by training an XGBoost model on a 
random selection of SNAs and testing predictions on the remain-
ing, unselected SNAs within the three subsets (Fig. 6c). We identi-
fied the points of diminishing returns, which balance the minimum 
number of SNAs with maximum Q2, by calculating the sample size 
closest to training size 1 and Q2 = 1. This point is 90, 20 and 31 SNAs 
(out of 336, 336 and 288 SNAs) with Q2 = 0.67, 0.88 and 0.66 for 
the encapsulated E7, encapsulated OVA and surface-presented OVA 
subsets, respectively. These points represent a mean of 16% of the 
total number of SNAs, suggesting that a small number of randomly 
selected SNAs can predict structure–activity relationships of a rela-
tively large SNA library. In practice, this external Q2 (prediction of 
non-synthesized SNAs) cannot be measured with a randomized 
subsample, but an internal Q2 can be measured by cross-validating 
within the randomized subsample. We show that the internal and 
external Q2 values are highly correlated (Fig. 6d and Supplementary 
Fig. 5), suggesting that we can identify points of diminishing returns 
as we continually synthesize random SNAs from an arbitrary library 
size. Combined with the high-throughput SNA synthesis and char-
acterization approach described above, the machine learning analy-
sis shows that a combined experimental and computational method 
can probe and predict the structure–activity relationships of tens of 
thousands of SNAs with a much smaller subset (order of thousands) 
of structures.

Outlook. This work, as well as other approaches35,36, makes clear the 
need to consider the full range of structure–activity relationships 
when designing nanomedicines by high-throughput processes. 
Although high-throughput techniques are industry standards in the 
combinatorial screening of small-molecule drugs, such approaches 
are just beginning to be implemented to define structure–activity 

relationships for therapeutic nanoconstructs. The data presented 
here show that such properties can be strongly interrelated in non-
obvious ways, and emphasize the risks of using limited datasets to 
make global conclusions about one structural consideration being 
more critical than others. Our results show that predictions about 
SNA activity simply based on what is known about the individual 
components of an SNA (that is, CpG, OVA, E7 and phospholip-
ids) are inaccurate in many cases. This interdependence and non-
linearity are underscored when applying the nonlinear machine 
learning models, as opposed to linear ones, in predicting the bio-
logical response of SNAs. Indeed, to realize rational approaches 
to vaccinology, this work makes a strong case for the combination 
of high-throughput experimentation and computational analysis 
in determining the structure–activity relationships of nanomedi-
cines in general and SNAs in particular. Note that this study did 
not directly pursue the identification or optimization of a candidate 
immunotherapeutic for a specific disease. Rather, this effort has 
examined how a single key biochemical step (TLR9 activation) in 
the generation of an immune response can be activated by nearly 
1,000 variations in SNA structure.

A key finding from our use of supervised machine learning to 
analyse the data generated for ~1,000 SNA structures is the accuracy 
of predicting activities when using data obtained only from rela-
tively small sublibraries. However, a broader use of this approach 
will require the careful design of structures in the random subsets 
to ensure the validity of predictions, and follow-up with experimen-
tal confirmation of predicted activities. In our study, we applied 
the machine learning independently for libraries defined by the 
selection of antigen and position of the antigen, with the benefit of 
knowing that the selection of antigen influences activity. This type 
of approach to structure–activity relationships is limited to pre-
dictions based on properties included in the training set. In addi-
tion to the unavoidable potential of missing unique combinatorial 
effects that are not captured in the sampled space, the accuracy and 
scalability of prediction that can be accomplished by supervised 
machine learning may differ for libraries consisting of other types 
of nanostructures.

Our constraint to a single readout and its dependence on a wide 
range of variables has led to a lesson in the design and development 
of a type of nanomedicine that could not have been extracted by the 
alternative and more conventional approach of evaluating a small 
number of candidate structures and analysing multiple immune 
system readouts (for example, cytokine expression or cellular prolif-
eration) in vivo; such an approach is severely limited in throughput 
by the small number of structures that can be prepared and evalu-
ated in parallel. Conversely, we note that TLR9 activation in a model 
cell line reports on one key step among many involved in raising 
cellular immune responses (for example, biodistribution, antigen 
delivery and presentation by different types of APCs), and that struc-
tures optimized for a single output may not be the best therapeutic 
candidates when examined in vivo. The pursuit of identifying and 
ultimately arriving at SNA (or other nanoparticle) immunothera-
peutic agents will be well served by the combination of using high-
throughput library screens in cellular assays, and in vivo examination 
of structures whose selection is informed by the library screen.

Methods
Materials. DOPE and DOPC were purchased from Avanti Polar Lipids. 
Phosphoramidites for DNA synthesis were purchased from Glen Research. 
Peptide antigens were custom ordered from GenScript. 2,2’-dipyridyldisulfide, 
hexadecylphosphonic acid, tris(2-carboxyethyl)phosphine hydrochloride, 
maleimide and 2,4,6-trihydroxyacetophenone were purchased from Sigma–
Aldrich. Monolayer disulfides were purchased from Chemtos. Peptide synthesis 
reagents were purchased from AnaSpec and MilliporeSigma.

DNA synthesis. DNA was synthesized with a MerMade 12 synthesizer. Cholesterol 
modification was done on the column in the synthesizer using 3′-Cholesteryl-TEG 
CPG (Glen Research) for 3′ modifications and Cholesteryl-TEG Phosphoramidite 
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(Glen Research) for 5′ modifications. For DOPE-modified oligonucleotides, a 
thiol-modified oligonucleotide was synthesized. DNA sequences are shown in 
Supplementary Table 2.

Synthesis of DOPE-SMPB. To 1 mol equivalent of succinimidyl 4-(p-
maleimidophenyl)butyrate (SMPB; Thermo Fisher Scientific) and 1 mol equivalent 
of N,N-diisopropylethylamine was added 1 ml of DOPE as received from Avanti 
Polar Lipids (25 mg ml−1 in chloroform). The reaction was incubated for 24 h 
at room temperature. The reaction was checked for completion with thin-layer 
chromatography using 20% methanol in dichloromethane as the mobile phase. On 
disappearance of the DOPE band in thin-layer chromatography, the reaction was 
washed three times with water, and the organic phase was dried under vacuum.

DOPE modification of oligonucleotides. The thiol-modified oligonucleotide 
was reduced with 200 mM dithiothreitol (DTT) in 100 mM phosphate buffer 
(pH 8.0) for 2 h at 40 °C. The oligonucleotide was purified away from DTT with 
NAP-10 columns using water as the mobile phase (GE Healthcare). The reduced 
oligonucleotide was immediately reacted with DOPE-SMPB as follows: DOPE-
SMPB (50 mol equivalents) was dissolved in ethanol in the same volume as the 
oligonucleotide. The two solutions were mixed together and incubated at room 
temperature for 48 h. The reaction mixture was washed with chloroform three 
times to remove excess lipid. The interface and the aqueous phase was lyophilized. 
The reaction yield and purity were determined by 20% denaturing polyacrylamide 
gel electrophoresis gels. Typically, yields were greater than 90% and no further 
cleanup was performed.

Synthesis of liposomes. DOPC (25 mg in chloroform) was transferred to a 
glass vial and dried overnight into a thin film, first under an N2 stream followed 
by high vacuum. For DOPC-DOPE mixture liposomes, 20 mol% DOPE was 
added to the 25 mg of DOPC before drying. The lipid film was rehydrated with 
1 ml of 1× phosphate buffered saline (PBS) and vortexed until no more clumps 
were visible. For encapsulated peptides, the peptide was dissolved into the PBS 
at 0.1 and 1 mg ml−1. The lipid suspensions were frozen in liquid nitrogen and 
thawed in a bath sonicator with sonication. The freeze–thaw was repeated three 
times. The solution was then extruded through 200, 100, 80 and 50 nm filters. 
Two filters were used for each extrusion, and the solution was passed through 
these filters 11 times. The liposomes were split into 2 after the 80 nm extrusion. 
Half of the solution was saved, and the remainder was extruded through a 
50 nm filter. The liposomes were dialysed against 1× PBS overnight to remove 
non-encapsulated peptide. The liposomes were characterized by dynamic light 
scattering for size (z-average reported), and phosphatidylcholine assay for 
concentration (MilliporeSigma). The liposomes extruded through the 50 and 
80 nm filters had z-averages of ~70 and ~100 nm, respectively. For DOPC-DOPE 
mixture SNAs, DOPE did not interfere with the phosphatidylcholine assay, 
so we assumed that the DOPC-to-DOPE ratio remained 80:20. The liposome 
concentrations were calculated from the diameter and the lipid concentration, as 
described by Banga et al.37.

Synthesis of complementary oligonucleotides with peptide. The complementary 
oligonucleotides were reduced with DTT as described above and mixed with 55 
equivalents of 2,2’-dipyridyldisulfide in 100 mM phosphate buffer (pH 8.0). The 
reaction was incubated at 40 °C for 24 h. The reaction process was monitored 
by absorption of pyridinethione at 343 nm. On completion, the modified 
oligonucleotide was washed 3 times with water in a 3K MWCO spin filter. The 
oligonucleotide was then mixed with 1 equivalent of cysteine-modified OVA 
(CSIINFEKL) and incubated at 40 °C overnight. The process was again monitored 
at 343 nm and washed with a spin filter as described above.

Duplex formation. The purified peptide–oligonucleotide conjugate and 1 
equivalent of the lipid-conjugated oligonucleotide were mixed in duplex buffer 
(30 mM HEPES (pH 7.4), 100 mM potassium acetate and 2 mM magnesium 
acetate). The mixture was heated to 65 °C for 10 min and slow-cooled to room 
temperature by turning off the heat block and allowing the temperature  
to equilibrate.

SNA synthesis. Lipid-modified oligonucleotides or duplexes were mixed with 
liposomes in a 384-well plate in a 40 µl final volume. The final concentration 
of lipid-modified oligonucleotide or duplex in each well was 10 µM. The 
concentration of liposomes was adjusted to accommodate SNAs of various 
oligonucleotide densities. After mixing, the plate was sealed and incubated at room 
temperature for 24 h.

Synthesis of the peptide substrate. The CRpY-NH2 peptide substrate was 
synthesized using standard fluorenylmethoxycarbonyl solid-phase peptide 
synthesis methods on a Rink Amide resin. The amino terminus was acetylated. The 
peptide was purified by reverse-phase high-performance liquid chromatography 
on a C-18 column in a gradient from water to acetonitrile, and fractions were 
checked for the correct mass by MALDI-MS. The peptide was lyophilized and 
stored as a solid until use.

SAMDI plate and monolayer preparation. Stainless steel plates custom designed for 
use in MALDI instruments were cleaned and used to evaporate a 1,536-spot pattern 
of 5 nm titanium (0.02 nm s−1), then 35 nm gold (0.05 nm s−1), using an aluminium 
mask. The gold array plates were incubated overnight at 4 °C in an ethanolic solution 
containing a 1:4 ratio of an asymmetric disulfide terminated with a maleimide 
group and a tri(ethylene glycol) group, and a symmetric disulfide terminated 
with tri(ethylene glycol) groups, with a 0.5 mM total disulfide concentration. The 
plates were then rinsed with ethanol, dried and placed in a solution of 10 mM 
hexadecylphosphonic acid in ethanol for 10 min at room temperature. Plates were 
then rinsed with ethanol, dried and then used for the SEAP assay.

SEAP assay. RAW-Blue cells (InvivoGen) were cultured as described by the 
manufacturer. The cells were collected and suspended at 550,000 cells ml−1, and 
17,000 cells were distributed into 384-well culture plates with a Thermo Fisher 
Scientific Multidrop Combi. Next, 10× SNA solutions were added to the cell 
culture plates with a Tecan liquid handler, then cultured at 37 °C under 5% CO2. 
After ~16 h, the cell culture plates were centrifuged at 300 rcf for 1 min, then 
10 μl of media was transferred to a 384-well reaction plate. Recombinant SEAP 
(0–1,600 ng ml−1) was prepared in media from untreated cells and then added 
to empty wells. This was used as the standard curve. To minimize free thiol in 
the media, which competes with substrate immobilization, 1 μl of 11 mM tris(2-
carboxyethyl)phosphine hydrochloride in water was added to the plates and they 
were incubated for 15 min at 60 °C to first reduce cystine to cysteine. The 60 °C 
incubation also inactivates any potential phosphatases other than SEAP, which 
is stable at 60 °C. Next, 1 μl of 12 mM maleimide was added to react with free 
cysteines for 1 h at 37 °C. Some 8 μl of 75 μM CRpY peptide substrate in reaction 
buffer (300 mM Tris, pH 8.5 and 2.5 mM MgCl2) was added to the reaction plate, 
then incubated for 1 h at 37 °C. To this, 2 μl of 11 mM pridoxal 5′-phosphate 
hydrate in reaction buffer was added. Next, 0.75 μl of the reaction solutions were 
transferred to 1,536-spot SAMDI array plates and incubated for 1 h at 37 °C. The 
plates were rinsed with water and ethanol, then dried with air. Matrix (15 mg ml−1 
2,4,6-trihydroxyacetophenone in acetone) was applied to the SAMDI plates and 
they were analysed by MALDI using an Applied Biosystems SCIEX TOF/TOF 
5800 MALDI instrument in positive reflector mode. The spectra were analysed by 
calculating the areas under the curves for the [M + H]+ and [M + Na]+ disulfide 
peaks corresponding to the substrate and product masses. Each SNA subset was 
tested in two wells (biological replicates) and each sample was tested on two 
SAMDI spots (technical replicates). Technical replicates with subthreshold signal-
to-noise ratios were excluded from the analysis.

Quantitative structure–activity relationship model. We trained quantitative 
structure–activity relationship models to predict immune activation from SNA 
properties. The training data contained 336 SNA rows with 9 property columns 
for datasets 1 and 2, and 288 SNA rows with 8 property columns for dataset 3. The 
response vector—also called the predicted variable—is the immune activation 
measured via the SEAP concentration. We used cross-validation, where a sample of 
data are left out for model testing, to calculate the predictive power Q2 metric:
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In this formulation, yi is the immune activation for test SNA i, ŷi is the predicted 
immune activation, ̄ytrain

 is the immune activation of the training set, and n is 
the number of cross-validated test SNAs. The Q2 metric can take on values from 
−∞ to 1, where 1 is perfect prediction, 0 is equivalent to random performance 
(such as predicting the mean immune activation of all SNAs in the training set), 
and negative values represent worse than random performance. We use fivefold 
cross-validation, where a random 80% of the data are selected for training, with 
the remaining 20% as validation. We selected three models to test for linear 
relationships among SNA properties and immune activation: linear regression, 
logistic regression and the nonlinear model XGBoost. If all relationships were 
linear, Q2 would be similar for all models. Similarly, logistic regression can fit trends 
that are more complex than linear regression, but it still treats multiple properties 
as linearly related and is still a linear model. For all models, we created an explicit 
null model by randomizing the data values before model training.

Statistics. Multi-way ANOVA was performed on each SNA subset using MATLAB 
software. Statistical comparisons of paired data were made using the two-tailed 
Wilcoxon test. Unpaired data were compared with a two-tailed t-test for single 
comparison. Finally, ANOVA was chosen for multiple comparisons using R and 
Graphpad Prism software.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
The custom codes used to generate the results reported in this manuscript are 
available from the corresponding authors upon reasonable request.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection AB Sciex ToF/Tof Series Explorer 

Data analysis MATLAB was used for ANOVA; other statistical tests were all implemented in the open source R environment. All machine learning was 
implemented in the R environment. The dimensional stacking code is publicly available at http:github.com/xuebert/
dimensional_stacking, and is also implemented in the R environment.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The data that support the findings of this study are available within the paper and its Supplementary Information. All data generated in this study are available from 
the corresponding authors upon reasonable request.
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Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Each SNA condition was tested in two wells (biological replicates), and each of these samples was tested on two SAMDI spots (technical 
replicates). This method was used to ensure a very high likelihood of obtaining a measurement for each condition and to reduce variability 
from noise.

Data exclusions One subset of data was discarded and the experiment repeated for that subset because the level of SEAP activity generally for all conditions 
was well above typical observations. This effect was traced to the contamination of lipid stock used for liposome synthesis with endotoxins.

Replication While most SNAs were tested once (with two biological replicates), some of the SNAs in each subset, along with a number of control wells, 
were present in multiple subsets. Hence, they were synthesized and tested independently in separate experiments on different days, thus 
enabling a verification of trends across experiments.

Randomization A homogenous suspension of cells was distributed to all of the wells tested in each subset.

Blinding The investigators were not blinded; however, the data was obtained by mass spectrometry and analysed with algorithms by defined 
numerical rules. Therefore, blinding was not necessary.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) RAW Blue cells were purchased from Invivogen (San Diego, CA).

Authentication RAW Blue cells were used without further authentication testing after purchasing.

Mycoplasma contamination Cell lines tested negative for Mycoplasma with the MycoAlert Plus Kit (Lonza, Basel, Switzerland).
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Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.
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