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ABSTRACT: Emerging peptide array technologies are able to
profile molecular activities within cell lysates. However, the
structural diversity of peptides leads to inherent differences in
peptide signal-to-noise ratios (S/N). These complex effects can
lead to potentially unrepresentative signal intensities and can bias
subsequent analyses. Within mass spectrometry-based peptide
technologies, the relation between a peptide’s amino acid sequence
and S/N remains largely nonquantitative. To address this
challenge, we present a method to quantify and analyze mass
spectrometry S/N of two peptide arrays, and we use this analysis
to portray quality of data and to design future arrays for SAMDI
mass spectrometry. Our study demonstrates that S/N varies
significantly across peptides within peptide arrays, and variation in
S/N is attributable to differences of single amino acids. We apply supervised machine learning to predict peptide S/N based on
amino acid sequence, and identify specific physical properties of the amino acids that govern variation of this metric. We find low
peptide−S/N concordance between arrays, demonstrating that different arrays require individual characterization and that global
peptide−S/N relationships are difficult to identify. However, with proper peptide sampling, this study illustrates how machine
learning can accurately predict the S/N of a peptide in an array, allowing for the efficient design of arrays through selection of
high S/N peptides.

Peptide arrays have emerged as an enabling tool for
identifying biologically relevant peptide substrates and

molecular recognition sites, and hold great promise as a new
analytical method for basic and translational research in the
biomedical sciences.1,2 Uses of peptide arrays include
measuring changes in enzymatic activityspecifically enzymes
that add or remove post-translational modificationsto gain
insight into different cellular pathways and processes.3−5 Other
applications include diagnostic or detection-focused arrays such
as differential peptide arrays to detect specific analytes in
complex mixtures6,7 or diagnose diseases.8,9 Many existing
methods are based on either radioisotopic or fluorescent labels
to detect reaction products.10,11 These methods introduce
additional protocol steps, and for the latter, can alter natural
biological activity leading to false interpretations, as when
resveratrol was erroneously found to enhance deacetylation on
a peptide with an attached fluorophore.12

We recently introduced the SAMDI mass spectrometry
method, which uses MALDI mass spectrometry to analyze
peptides that are immobilized to a self-assembled monolayer of
alkanethiolates on gold (Figure 1), and we have demonstrated
the use of this method for profiling enzyme specificities,13 for
discovering new enzymes,14 and for profiling activities in a
lysate.15 This method provides many benefits, including the use
of surface chemistries that are intrinsically inert to the

nonspecific adsorption of protein, the availability of a broad
range of chemistries for immobilization of peptides, and, most
significantly, the compatibility with matrix assisted laser
desorption ionization mass spectrometry to analyze the masses
of the peptide-alkanethiolate conjugates. This ability to directly
measure peptide masses16 allows a straightforward analysis of
peptide modifications by identifying the corresponding mass
shifts. This method has also been demonstrated to provide a
semiquantitative measure of the peptides’ substrate activity.15

However, the S/N of a mass peak for a peptide often depends
on its amino acid sequence, resulting in both well-suited and
poorly suited peptides for inclusion in an array.
In practice, the signal-to-noise ratio (S/N) of a peptide in

mass spectrometry can vary, making certain sequences poorly
compatible with the detection method.17,18 Hence, some
fraction of peptides serves no useful purpose in an experiment.
To identify peptide array designs that maximize S/N, we
synthesized two peptide arrays and measured the S/N of each
peptide using SAMDI mass spectrometry. Then we randomly
chose subsets of the peptides from each array to train a machine
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learning model to be able to predict the S/N of the remaining
peptides in their corresponding array based on amino acid
sequences. We identified and compared amino acids associated
with high S/N peptides in two peptide arrays and used machine
learning to highlight properties that predict the relationship
between amino acids and S/N. While SAMDI-specific results
are not generalizable, the method we describe can be adapted
and applied to diverse peptide array technologies.
Previous work has explored peptide-S/N relationships

involving peptide charge (as with arginine residues)19,20 or
hydrophilicity, where hydrophilic proteins can be preferentially
detected in MALDI-MS due to easier cocrystallization with
MALDI matrix.21,22 In addition to hydrophilicity, many specific
and complex peptide-matrix interactions can explain MALDI
peptide S/N.20,23,24 Single amino acids have been reported to
improve signal strength. For example, Krause and co-workers
reported that peptides containing arginine or phenylalanine
typically contributed to higher MALDI signal strength.25

Additionally, the relationship between S/N and amino acid
sequence gains complexity with the addition of chemical
adducts. For example, Kolarich and co-workers reported
peptides with attached N-glycans have altered signal strengths
depending on MS instrument types or subtle changes to
peptides from glycosylation.26 Many studies use peptides that
may have undergone oxidation25,27−29 which likely also affects
peptide signal strength. These peptide modifications introduce
difficulties in signal detection and emphasize the need to
integrate computational strategies to better understand the
relationship between the amino acid sequence of a peptide and
the quality of its signal. We select peptide libraries that are
unbiased in their composition to evaluate differences in S/N
due to differing amino acid sequences, and we offer a complete

empirical analysis relating amino acid composition and S/N of
the peptides.
Using statistical and machine learning strategies, we

investigated how amino acid composition affects S/N in
SAMDI mass spectrometry and how subtle amino acid
differences can give rise to different S/N. To investigate the
consistency of peptide S/N relationships across distinct
experimental arrays, we focus on two synthesized peptide
arrays, each containing two consecutive variable positions
(represented by all 19 amino acids except for cysteine). The
amino acids surrounding the variable positions however are
different. The two peptide arrays are Ac-GRKacXZC (K-array)
and Ac-GXZHGC (H-array). We collected peptide spectra by
SAMDI mass spectrometry and calculated the S/N of each
peptide. Statistical analysis identified amino acids associated
with low or high S/N peptides. We trained machine learning
models using a random subset of peptides from each array to
identify factors that predict S/N from the physical properties of
the peptide’s amino acids. We then predicted the S/N of the
remaining peptides and compared the predictions to our
experimentally collected S/N values from SAMDI mass
spectrometry. Accurate prediction of peptide S/N from
machine learning models reveals high and low quality peptides
which allows for educated and improved design of peptide
arrays without costly screening.

■ MATERIALS AND METHODS
Solid-Phase Peptide Synthesis. Data was collected from

K- and H-peptide array experiments. The K-peptide array
synthesis and methods have been previously published15 and
contains peptides of the form Ac-GRKacXZC, where X and Z
represent all combinations of 19 amino acids (cysteine
omitted) for a total of 361 peptides. We synthesized another
361 membered unmodified histidine peptide array with the
sequence Ac-GXZHGC, referred to as the H-array. The
constant amino acids (everything except X or Z) are referred
to as the outside amino acids. Peptides were synthesized using
standard solid phase peptide synthesis on Fmoc-Rink Amide
MBHA resin purchased from Anaspec. Fmoc-protected amino
acids were purchased from either Anaspec or Sigma-Aldrich.
The Fmoc-Rink Amide resin was swelled in dimethylformamide
(DMF) for 30 min and treated with 20% piperidine in DMF for
20 min to remove the Fmoc protecting group. The first Fmoc-
protected amino acid was coupled to the resin with pybop and
N-methylmorpholine at a 4:4:8 ratio, which was repeated until
all the amino acids were coupled to the resin. Once the Fmoc
protecting group was removed from the final amino acid, the
resin was treated with 10% acetic anhydride in DMF for 30 min
to acetylate the N-terminus. The peptide was cleaved from the
resin with a solution of 95% trifloroacetic acid (TFA), 2.5%
triethylsilane, and 2.5% milli-q water for 2 h. To remove the
resin, the solution was filtered and precipitated with peptides
with ethyl ether. The peptides were resuspended in 0.1% TFA,
lyophilized and resuspended in 0.1% TFA again. The peptides
are neutralized by dilution into 50 mM Tris buffer pH 7.5
before immobilization.

Preparing Peptide Arrays. Peptide arrays were prepared
as described previously.13,16 Briefly, steel plates were evaporated
with 384 gold spots. The plates were soaked in an
alkanethiolate solution that self-assembles onto the gold
surfaces. The alkanethiolate monolayers presented a functional
maleimide group against a background of tri(ethylene glycol).
Peptides were transferred onto the gold spots using Tecan

Figure 1.Measuring S/N on peptide arrays using SAMDI MS. SAMDI
MS uses MALDI mass spectrometry to analyze peptides that are
immobilized to a self-assembled monolayer of alkanethiolates on gold.
Depending on the enzyme of study, the peptides may contain a
chemical adduct, such as an acetyl group if deacetylases are the
enzymes of interest. The expected peak before enzyme treatment
includes the peptide immobilized to the alkanethiolate with the
attached chemical adduct of interest. We quantify the expected mass
peak and noise using their area under the curve to calculate peptide S/
N.
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robotics and incubated at room temperature for 1 h for
immobilization. Peptide immobilization occurs through con-
jugate addition of the thiol on the terminal cysteine residue to
the maleimide.
SAMDI Mass Spectrometry. The SAMDI peptide array

plates were coated with a 10 mg/mL 2′,4′,6′-trihydroxyaceto-
phenone (THAP) MALDI matrix in acetonitrile. Each
immobilized peptide was analyzed in the reflector positive
mode with 900 shots on an AB Sciex TOF/TOF 5800 MALDI
mass spectrometer.
Statistical Testing to Identify Amino Acids Associated

with High or Low S/N. The S/N of all peptides were
calculated by dividing the integrated product (area under the
curve) of the expected peptide peaks (the signal) by the
integrated product of a region in the spectrum devoid of peaks
(the noise). The S/N for each peptide were sorted and ranked
from lowest to highest. The S/N increase for consecutive
peptides was calculated, and the low region boundary was
defined as when a large change in S/N increase occurs.
Similarly, a high S/N region was identified with the same
process. This method allows different sizes for low and high
regions. Amino acid enrichment in either region was
determined using the Fischer exact test, which calculates the
probability to observe at least as many amino acids in the
region. Since there were 361 peptides, the significance
threshold was determined by a Bonferroni corrected p-value
cutoff of 10−4 (approximately 0.05/361); all reported p-values
define the likelihood that the observed number of amino acids
is within the low or high regions by random chance.
Machine Learning Methods. We considered a variety of

linear and nonlinear supervised techniques: partial least-squares
regression (PLSR), random forests, deep learning, support
vector machines (SVM), and nearest neighbor regression.
Random forest outperformed PLSR (in terms of Q2) because
PLSR can only model linear relationships. Deep learning,
SVMs, and nearest neighbor regression all require parameter
tuning, which if done improperly, commonly led to poor
performance (zero or even negative Q2 values). Additionally,
the multiple training/testing of different feature sets would
usually require many iterations of parameter tuning, hindering
our analysis. However, the training parameters of random forest
typically require little to no tuning, and we found that it
outperformed other methods while requiring less human
guidance.
Random forest is a commonly used nonlinear supervised

learning model that is an aggregation of individual decision
trees.34,36 Decision trees are composed of multiple levels of “if-
then” statements to segment data. For example, if high amino
acid polarity leads to high S/N, then a decision tree would
identify appropriate thresholds, alpha and beta, and create the
rule: “If polarity > alpha, then S/N > beta”. This rule segments
the data based on high/low polarity. Each decision tree is
distinct as it is trained on a random subset of the data, selecting
a fraction of the total number of rows and columns of the data
matrix. This sampling has a 2-fold benefit: it avoids overfitting
data and increases generalizability of the aggregated model.
Random forest also has a low barrier for implementation due to
existing toolboxes that can be used off-the-shelf. We used the
randomForest library in the freely available software environ-
ment R, version 3.3.1. The common usage of random forest, in
combination with its ease of use, provided an ideal framework
for this study.

Computational Development. All data analysis and
model training was performed in the freely available statistical
software environment R, version 3.3.1. All code is documented
in the following public git repository: https://github.com/
xuebert/ML_SN_SAMDI_AChem. A generalized graphical
user interface has been developed to visualize data in a bubble
chart framework; this GUI is provided at https://github.com/
xuebert/bubble_chart_app.

■ RESULTS AND DISCUSSION
Experimental Design. We calculated peptide S/N using

SAMDI mass spectrometry in two peptide arrays: Ac-
GRKacXZC (K-array) and Ac-GXZHGC (H-array), where X
and Z represent all combinations of 19 amino acids (cysteine
omitted) for a total of 361 peptides in each array. To investigate
the relationships between specific amino acids and S/N, we
conducted statistical tests and machine learning. For each array,
we trained a machine learning model with randomly chosen
groups of peptides consisting of 5 to 350 peptides to discover
patterns and make predictions of peptide S/N based on amino
acid sequences. Through subsequent machine learning analysis,
we identified physical properties and amino acid positions that
are useful in predicting the peptide’s observed S/N. We applied
the corresponding results to a published peptide array data set
to reveal how S/N information can inform and serve as a guide
for experimental design and analysis. In doing so, we discovered
specific amino acid interactions that can explain observed S/N-
amino acid relationships. From analysis of both arrays, we
found that the machine learning models need to be trained on
only 1/3 of peptides in each array to make accurate predictions
of peptide S/N.

Preparation of Peptide Arrays and S/N Data
Collection. We used solid-phase peptide synthesis to
synthesize two peptide libraries containing terminal-cysteine
residues, Ac-GRKacXZC (K-array) and Ac-GXZHGC (H-
array), where X and Z represent all amino acids except cysteine
for a total of 361 peptides in each array. Steel plates with 384
gold spots were soaked in a solution of disulfides as described
earlier.9 The monolayers self-assembled onto the gold surfaces
and presented a functional maleimide group allowing for the
immobilization of thiol-containing molecules. We treated each
monolayer surface with a unique peptide, which was
immobilized to the surface through the side-chain thiol of the
terminal cysteine residues. Eleven identical arrays were printed
for the experiments that follow. We collected spectra for each
immobilized peptide for both arrays on an AB Sciex 5800
MALDI mass spectrometer using reflector positive mode.
Noise was quantified as the area under the curve (AUC) of the
mass spectrum in a region devoid of signals, and the peptide
signal was quantified as AUC of the expected peptide-
terminated alkanethiol mass minus the noise AUC. Finally,
we calculated S/N as the peptide’s signal AUC divided by the
noise AUC and calculated the mean for each peptide over the
11 plates in each array.

S/N is Attributable to Single Amino Acids in the K-
Array. Comprehensive analysis of the K-array revealed general
trends of single amino acids in a peptide on the observed S/N
for that peptide. We used the Fischer exact test (Bonferroni
corrected p < 10−4) to determine whether peptides with low or
high S/N were enriched with specific amino acids. The
corresponding p-values reflect the probability that the observed
number of amino acids is within either the low or high S/N
region by random chance (gray regions in Figure 2A). All p-
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values are reported in Supporting Information Figures 1 and 2.
We found enrichment of peptides with X-position tryptophan
and leucine in the low S/N region and enrichment of peptides
with Z-position glycine in the high S/N region (Figure 2B).
This result suggests that single amino acids can have a strong
effect on a peptide’s detectability in MALDI-MS. The
exceptionally low S/N of tryptophan and leucine-containing
peptides suggest that their S/N-lowering effect is particularly
strong, further suggesting that future K-arrays can disregard
tryptophan and leucine while favoring glycine.
Peptides in the K-array display a wide range of S/Nfrom

3.8 to 313.7 (S/N is unitless)demonstrating a wide range of
poorly detectable to detectable peptides (Figure 2A).
Combined with the statistical tests, this result suggests that
poorly detectable peptides can be predicted by their sequence.
This observation may explain differences in MS-detectable
peptide fragments after protein digestion.30,31 In MS-based
proteomics experiments, proteins are commonly digested and
the fragments are detected using mass spectrometry. It is rare
for complete detection of all peptide sequences after
digestion,32,33 and incorporation of known poorly detectable
peptide information could increase confidence of protein
observation. As we demonstrate, characterization of a

MALDI-MS experimental pipeline with known peptide
sequences can inform subsequent protein quantification
experiments.

Machine Learning Model Predicts SAMDI-MS S/N as a
Function of Amino Acid Sequence. We developed a
machine learning model to predict the S/N of peptide-
terminated alkanethiolates in the SAMDI spectrum based on
amino acid sequence with high accuracy suggesting that amino
acid composition drives S/N observations in a predictive
manner. We trained a random forest34 machine learning model
to predict S/N based on the hydrophilic, steric, and electronic
physical properties of amino acids.35 The training data
contained 361 peptides (rows) and 39 associated physical
properties for each of the X- or Z-position amino acids
(resulting in 78 columns). The response vector, or predicted
variable, defines the mean S/N from the 11 control plates.
We used cross-validation, where a data sample (randomly

selected rows) is left out for model testing, to calculate the
predictive power Q2 statistic37

= −
∑ − ̂

∑ − ̅
Q

y y

y y
1

( )
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2

Figure 2. Low peptide S/N is observed in peptides containing tryptophan and leucine and aspartic acid and glutamic acid. Peptide S/N was averaged
over 11 control plates. (A) Peptides in the K-array were sorted according to S/N. Low/high S/N regions are identified (see Methods). S/N ranges
from 3.8 to 313.7, demonstrating that peptides vary greatly in S/N. (B) Amino acids found in the low/high regions were found to be statistically
significant (Bonferroni corrected p < 10−4) using a Fischer exact test. The reported p-value is the chance the observed number of amino acids is
within the low or high region by random chance. Peptides with X-position tryptophan and leucine have statistically low S/N, and peptides with Z-
position glycine have statistically high S/N. Peptides that have X-position alanine are not statistically significant and are representative of other amino
acids. Panels C and D describe the same methods for the H-array. S/N has a similarly large range for both arrays, but the differences in amino acids
observations suggest that dissimilar mechanisms are responsible for S/N.
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In this formulation, yi is the true S/N for the left-out test
peptide i, yî is the predicted S/N of the test peptide, yt̅rain is the
sample mean of S/N in the training set, and n is the number of
cross-validated test peptides. The Q2 statistic can take on values
from −∞ to 1, where 1 represents perfect prediction and 0 is
equivalent to random performance. Cross-validation effectively
simulates a partially synthesized array. By training on a
randomly selected subset of peptides and testing simulated
predictions on the remaining data, cross-validation mimics the
process of experimentally validating peptide-S/N relationships.
We create an explicit null model for each case by randomizing
the data values prior to model training; the average Q2 value of
the null case was about 0.
The K-array analysis resulted in a Q2 of 0.59 using both X-

and Z-positions and all 39 amino acid physical properties. The
high Q2 value confirms our hypothesis that S/N values can be
reliably predicted from amino acid sequences. This perform-
ance further suggests that S/N of new amino acids, such as non-
natural amino acids, can be predicted using their known
physical properties. Together these results strongly indicate that
amino acid sequence influences S/N in MALDI-MS. However,
the inability to acquire a Q2 value closer to 1 suggests that
hidden variablessuch as chemical interactions with amino
acids outside the X- and Z-positionsplay an important role in
the overall response. These interactions are challenging to take
into account, as they cannot be characterized with physical
properties alone.
Bubble Chart Illustrates the S/N as an Experimental

Design Parameter. As a measure of data quality, the S/N
becomes another experimental design parameter. When
studying enzyme activity on SAMDI peptide arrays, we measure
the extent of peptide conversion with the enzyme.15 Enzyme-
treated peptides can be sorted into four categories: (i) high
enzyme activity and high S/N, (ii) high enzyme activity and low
S/N, (iii) low enzyme activity and high S/N, and (iv) low
enzyme activity and low S/N. In the past, the SAMDI peptide
array data was compiled into heat-maps that portrayed only
enzymatic activity. We wanted to incorporate a metric into
SAMDI array data output to differentiate between peptides that
offer reliable and valuable information (category i from those of
lesser importance).
To this end, we include S/N information to complement a

previously published experiment.15 We construct a bubble chart
where each peptide is represented by a circle, whose color
represents the extent of peptide conversion to the product, and
whose size represents normalized S/N of the peptide before
enzyme treatment. Previous approaches that use a color-only
heatmap give the impression that each data point is equally
valid in an analysis of the array data. However, some of the
peptides contribute information that is more reliable because
they have smaller errors. Observed enzyme activity on a peptide
does not always correlate to significance. By incorporating S/N
in bubble size, we rule out low performance signals and focus
the analysis on high S/N ones. We illustrate this approach by
replotting the heatmaps from Kuo et al.15 to include S/N
(Figure 3).
In Kuo et al.,15 the K-array was exposed to cell lysates, and

endogenous deacetylase activity was quantified by measuring
the fraction of deacetylated peptides with MALDI mass
spectrometry.15 Deacetylation activity was quantified as the
AUC of the modified (deacetylated) peptide divided by the
AUC of both modified and unmodified peptides. AUC of each

peptide is the sum of the three background-subtracted ion
peaks in MALDI-MS: H+, Na+, and K+.
This new analysis revealed additional insights into the

previous data. Peptides containing amino acids tryptophan,
leucine, arginine, methionine, and lysine reflect low S/N,
suggesting that their activity profiles are less useful. Conversely,
peptides containing proline, glutamic acid, and glycine reflect
high S/N, suggesting that their activity profiles are more useful.
Peptides containing leucine exhibit low S/N exclusively in the
X-position, demonstrating that certain amino acids can have
positional effects on S/N. Though amino acid presence can
largely explain a peptide’s S/N, we also find that some peptides
have inexplicably low S/Nsuch as KAA, KIT, and KIQ
despite general trends suggesting that these peptides should
have high S/N. This peculiarity highlights the complexities in
S/N and reinforces the utility of machine learning strategies to
predict S/N, which can be a critical design factor for future
arrays.
Testing for S/N does not supplant tightly controlled and

validated peptide array experiments. Instead, we suggest that
accounting for unknown influences that lower confidence of a
signal’s true valuesuch as peptide synthesis inefficiencies, side
reactions, peptide loss from washing, or ionization efficien-
ciescan better guide experimental design and data analysis.
These influences are especially complicated with peptide
species, where it is not clear how different amino acid
sequences affect S/N. Machine learning can easily account for
such effects.

Low S/N Peptides Offer Unrepresentative Signals. The
experiments by Kuo et al. demonstrated that low S/N peptides
have higher variance across replicates. The same K-array
measurements were carried out on two time points and across

Figure 3. Heatmap of cell lysate deacetylation activity and S/N
highlights trustworthy peptides. Bubble color is based on deacetylase
activities from Kuo et al.9 for lysate treated ac-GRKacXZKC peptide
arrays. Bubble area represents peptide S/N before lysate treatment,
normalized by max S/N. Amino acids are sorted by their general trend
in peptide S/N when in either X- or Z-position. Peptides containing
tryptophan (W), arginine (R), methionine (M), and lysine (K) have
consistently low S/N, regardless of position. This illustration
emphasizes peptides that are both active in terms of enzymatic
activity and reliable in terms of S/N. In contrast, the highest activity
peptides (darkest in color) do not necessarily give the highest S/N
(largest bubble).
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three different cellular conditions. We compared the variance in
replicates of peptides in the top 20% of S/N to those in the
bottom 20%. A one-sided F-test verified that the top 20%
peptides have lower replicate variance than the lower 20%
across all three conditions and across both time points (p <
10−10 for all cases). This finding suggests that peptides with low
S/N have unrepresentative (or possibly random) signals, and
they should be weighted less during analysis to avoid misled
conclusions. To investigate further, we calculated the standard
deviation of deacetylase activity on each peptide and plotted it
against S/N (Supporting Information Figure 3A); peptides with
lower S/N have a higher variance in deacetylase activity. This
trend was consistent for all days and for all experimental
conditions, with a high anticorrelation coefficient (ranging from
−0.814 to −0.975, Supporting Information Figure 3B),
demonstrating that peptides with low S/N can give
unrepresentative measurements.
S/N is Attributable to Single Amino Acids in the H-

Array. We investigate the H-array, Ac-GXZHGC, to analyze
the generalizability of our findings; that is, do S/N character-
istics of peptides from the K-array also apply to other peptide
arrays? Similar to the K-array, the H-array has a wide range of
S/N values, ranging from 5.5 to 255 (Figure 2C and 2D),
reinforcing the fact that peptides span a wide range of
nondetectable to detectable signals in MALDI. The statistically
low S/N peptides contain aspartic acid and/or glutamic acid,
suggesting that their synthesis may be unnecessary in future
experiments. Peptides with phenylalanine have statistically high
S/N values suggesting that additional phenylalanine may
improve peptide signals in the H-array.
Context Matters: S/N Characteristics Are Inconsistent

between the K-Array and H-Array. In addition to the
variable composition of amino acids, the surrounding amino
acids (those not in the X- or Z-position) play a role. Within the
same array, S/N appears consistent between positions
(Supporting Information Figure 4), suggesting that S/N
remains largely unchanged when amino acid substitutions are
made in the X- or Z-positions. However, peptides that had the
lowest S/N in the K-array contained tryptophan, arginine and
methionine; those with the lowest S/N in the H array had
aspartic acid and glutamic acid. This disparity demonstrates that
S/N characteristics in one array can be contextual and are not
always consistent with a different array (Figure 4). This
observation suggests that the outside amino acidsarginine
and lysine in the K-array and histidine in the H-arraystrongly
influence SAMDI peptide detection. In other words, the amino
acid context around X- and Z-positions influences overall
peptide detection, and partial knowledge of amino acid
sequence is insufficient in understanding S/N values. This
finding suggests that future SAMDI arrays require individual
peptide−S/N characterization, and current understanding of
mass spectrometric peptide−S/N relationships is insufficient to
design a peptide array a priori.
Physical Interactions Help Inform S/N Differences. S/

N differences can arise from a variety of sources, including
synthesis inefficiencies, side reactions, and poor MALDI-MS
ionization. Peptides with both methionine and tryptophan have
low S/N in the K-array, and both have shown sensitivity to
oxidation,27,28 sequestering the relevant peaks and lowering
signal strength. However, Lee and co-workers demonstrated
greater oxidation of histidine than either methionine or
tryptophan,38 and Stafford and co-workers reported similar
findings in oxidation of histidine in peptide arrays.27 Their

results are contrary to our lack of observed histidine oxidation
(or low S/N) in either array, which remains unexplained.
In contrast to the K-array where methionine and tryptophan

associate with the lowest S/N, glutamic acid and aspartic acid
have the lowest S/N in the H-array (Figure 4). Lysine has
strongly favorable hydrogen bonding energies,39 and when in
close vicinity of methionine and tryptophan, hydrogen bonding
could catalyze oxidation.39,40 Tryptophan-containing peptides
have statistically low S/N specifically when in the X-position
(Figure 2), which is directly adjacent to the lysine and further
supports this hypothesis. If hydrogen bonding stabilization is
required for methionine or tryptophan oxidation, then the
presence of carboxylic acid groups on acidic amino acids may
be unfavorable for oxidation. To explore this concept further,
we compared methionine or tryptophan containing K-array
peptides with either glutamic or aspartic acid to those without
glutamic or aspartic acid. We applied a Mann−Whitney U test
and found that peptides with one of methionine or tryptophan
and one of glutamic or aspartic acid had higher S/N values (p =
0.0050) than peptides with methionine or tryptophan without
either glutamic or aspartic acid, maybe indicating that the two
acidic amino acids protect against methionine and tryptophan
oxidation.
High S/N peptides in the K-array commonly contain

hydrophilic amino acids, such as glutamic acid, asparagine,
and glutamine, potentially because of more efficient crystal-
lization within the matrix. This finding is in agreement with a
report by Fenselau and co-workers, where hydrophilic proteins
were preferentially detected in MALDI-MS due to differences
in the cocrystallization.21 However, the H-array has high S/N
associated with hydrophobic amino acids: proline, tyrosine,
phenylalanine, and isoleucine. The divergence in S/N of
hydrophobic and hydrophilic amino acids suggests that
mechanisms leading to high S/N are different between the
two arrays.

Figure 4. Amino acid influence is context dependent. Amino acids are
sorted by their correlated mean peptide S/N in the K-array when in
either X- or Z-positions. Bars represent S/N normalized by the highest
value within each array. The H-array shows little agreement, suggesting
that the surrounding amino acids strongly influence S/N. The two
negatively charged amino acids, aspartic and glutamic acid, have the
largest difference between the two arrays, suggesting a relation
between charge and S/N, but only within the H-array.
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A two sided Mann−Whitney U test (Bonferroni corrected p
< 2.6 × 10−3) reveals peptides that contain eight amino acids in
the X- or Z-position that have statistically different S/N values
between the two arrays: glutamic acid, tryptophan, aspartic acid,
methionine, arginine, lysine, glycine, and phenylalanine. This
test directly compares differences between the two arrays rather
than within the array, which has resulted in more amino acids
than the Fischer exact test in Figure 2. Only arginine and
phenylalanine differ from Figure 2, and both amino acids have
lower S/N in the K-array. This result contrasts with those of
Krause and co-workers where peptides with higher numbers of
arginine or phenylalanine typically contributed to higher
MALDI signal strength25 (the K-array has an additional
arginine). The unusual observation may be due to an unknown
interaction with other outside amino acids, indicating that
peptide S/N should be tested for each peptide array.
Machine Learning Performance Across Positions and

Physical Properties Help Explain S/N Observations. We
trained random forest models with individual physical proper-
ties to assess the impact each property has on S/N. Highly
predictive properties (namely, those with highest Q2) suggest
that the associated physical property is highly relevant and
predictive of SAMDI-MS S/N. In addition, we independently
evaluated the X- and Z-positions to see if one position reflected
more predictive power. Positional differences suggest that the
amino acid position, and not merely composition, influences
the predictive power of our machine learning model.
Using both X- and Z-positions and all physical properties, the

K-array and H-array had a Q2 of 0.59 and 0.61, respectively
(Figure 5). The similar Q2 values suggest that the models
reached an upper limit to predictive performance from amino
acid sequence. Predictions based on the amino acids in both X-
and Z- positions consistently performed better than predictions
based solely on one position: Q2 = 0.22 and 0.20 for the X- and
Z-positions in the K-array, respectively, and Q2 = 0.16 and 0.28
in the X- and Z-positions of the H-array, respectively. As
expected, more complete amino acid information results in
better prediction. However, the higher Q2 for the Z-position in
the H-array suggests that positions can have varied influence on
S/N. This observation suggests that the Z-position interacts
with the histidine to change S/N detection in MALDI-MS
more strongly than the X-position. In addition, the highest
single property Q2 values0.57 and 0.54 in the K- and H-array,
respectivelyare close to the Q2 value of all properties. This
observation indicates that few properties are necessary to
predict S/N and that many physical properties are redundant.
In terms of physical properties (39 total), we do find both

consistent and inconsistent trends for the two arrays. Electronic
properties (15 total) tend to be less predictive for both arrays
than steric or hydrophilic properties (Supporting Information
Tables 1 and 2). Steric properties (16 total) and hydrophilic
properties (8 total) are especially highly predictive in the K-
and H-arrays, respectively. Hydrophilic properties are highly
predictive in the H-array potentially due to the hydrophilicity of
glutamic and aspartic acid and their association with low S/N
exclusively in the H-array. Similarly, hydrophobic amino acids
like proline, tyrosine, phenylalanine, and isoleucine tend to
have high S/N. This alignment explains why hydrophilic
properties are predictive in the H-array. However, it is unclear
why electronic properties are relatively less predictive while
steric properties are more predictive in the K-array.
Despite these differences, physical properties are similarly

predictive between the K-array and H-array (Figure 5), as

evident in their closeness to the diagonal. That is, a predictive
or nonpredictive property remains largely the same between
arrays, but there still exist small differences between the
performance of steric and hydrophilic properties between
arrays. This relation demonstrates that the same properties
govern S/N observations, but because single amino acids differ
in S/N characteristics (Figure 4), these results altogether
suggest that S/N values manifest from different mechanisms
between the arrays. These different mechanisms are likely a
direct result of context differences, specifically relating to the
outside amino acids.

Machine Learning Cannot Predict S/N on Completely
Unknown Peptide Arrays. We trained various machine
learning models on the K-peptide array and tested them on the
H-array, and vice versa, to assess the feasibility of predicting S/
N on a de novo peptide array. We trained models for every
positional combination to interrogate exhaustively the entire
space. For example, we trained a model on X-position data in
the K-array, then testing on the Z-position in the H-array, and
we continued with all combinations of positions. We also
trained several types of models to gauge whether common
machine learning models can predict S/N on different arrays:
random forest,34 deep learning,41 nearest neighbor regression,42

and partial least-squares regression.43 The models had the
following model-specific parameters: random forest had 1000
trees, deep learning consisted of two layers of 200 nodes with

Figure 5. Peptide S/N is predicted as a function of amino acid
properties. Peptide S/N was predicted using a random forest machine
learning model based on 39 amino acid physical properties, shown in
diamonds, of the amino acid in either the X-position (red), Z-position
(blue), or both (purple). Also, models were fit on individual properties
to identify their predictive power, shown in circles. Random forest
models contained 1000 trees and the predictive power, quantified by
the Q2 metric, was calculated based on 5-fold cross-validation. All Q2

values are listed in Supporting Information Tables 1 and 2. Consistent
for both peptide arrays, the highest Q2 values were attained when using
both positions with all physical properties (purple diamond). Z-
position Q2 values (blue) are higher in the H-array, which suggests that
positions have varied predictive power on S/N. In addition, most
properties lie near the diagonal indicating that they have similar
predictive power between peptide arrays; the amino acid disagreement
in Figure 4, however, suggests that those properties are predictive for
different reasons.
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feed-forward connections; nearest neighbors regression used 10
neighbors; and partial least-squares regression used one
component, or loading vector.
All models trained on the K-array failed to predict S/N in the

H-array, and vice versa (Q2 < 0.1). This failure is attributable to
S/N disagreement between peptide arrays for each amino acid
(Figure 4), which arises from the unique outside amino acids in
the two arrays (GRKacXZC and GXZHGC). This finding
reinforces the idea that context matters: interactions with
outside amino acids influence S/N, and that peptide−S/N
relationships within one array do not always generalize to other
arrays. While these results do not present general rules for
peptide S/N predictions on new arrays, we have developed a
method that will be invaluable for designing and preparing new
SAMDI peptide arrays. This work introduces a strategy to
identify the specific rules of a given array.
Only 1/3 of Peptides in an Array Are Required for

Machine Learning Model Prediction of Peptide S/N. We
investigated the minimum number of peptides in an array
needed to train a model that could accurately predict S/N of
the full array. We simulated a partially synthesized array by
randomly selecting subsets of peptides from each array to train
the machine learning model to predict S/N of the nonselected
peptides. The number of randomly selected training peptides
ranged from 5 to 350, and each training size contained 200
repetitions of selecting random peptides. We trained a random
forest model with all 39 physical properties in both amino acid
positions. The null model with randomized data performed
consistently around Q2 = 0. We identified the point of
diminishing returns, which balances minimum training size with
maximum predictive power, by normalizing the number of
training peptides and finding the sample size closest to training
size 1 and Q2 = 1. The point of diminishing returns was found
to be 87 and 111 peptides for the K-array and H-array,
respectively, both of which had a Q2 = 0.48 (shown with arrows
in Figure 6). In other words, as the number of training peptides
used increases, the Q2 (predictive power) increases until 87
peptides are used in the K-array and 111 peptides are used in
the H-array, when Q2 becomes roughly constant. This result
shows that we can partially screen future peptide arrays by
synthesizing only about 100 of the planned 361-sized array, or
roughly one-third, reducing the use of resources and time.
Though we cannot generalize this specific ratio to larger array
sizes, these results suggest that only a fraction of peptides in a
given array need to be synthesized to identify the rules of that
array, and the remaining synthesis can be tailored based on
those specific rules. This machine learning technique can
prevent costly experimental screens and assist researchers
optimize the design of future arrays.

■ CONCLUSIONS
There are significant variations in the intensities of peaks in
SAMDI mass spectrometry that can arise from different peptide
sequences. SAMDI analysis of peptide arrays demonstrates that
peptide signals can have a wide range of S/N, where many of
the peptides are nearly undetectable. We find that S/N is
attributable to single amino acids, offering design choices to
increase information content. However, the underlying basis of
S/N is unclear and may be due to complex interactions among
amino acids, matrix, crystallization, or ionization efficiencies.
Additionally, we find that the two arrays used in this work
exhibited different S/N values for different amino acids,
demonstrating that the whole amino acid sequence can affect

S/N values in MALDI-MS. Machine learning identified physical
properties that predict S/N with high accuracy. Machine
learning models can be trained on a fraction of the peptide
sequences and still describe the full set of sequences, allowing
early selection of high S/N peptides. Such computational
models allow for the design of arrays consisting of only high S/
N peptides without costly screens or unnecessary peptide
library syntheses. Additionally, accounting for S/N as a design
choice can prevent inaccurate results drawn from poor peptide
measurements.
This work significantly improves and simplifies high-

throughput data analysis by factoring in data quality. The
statistical and machine learning methods presented here allow
us to discover the most valuable information from peptide
arrays and plan future experiments with more confidence. As
demonstrated, these methods can inform the design of new
peptide arrays using a small set of presynthesized peptides. The
presented methodology and applications of S/N are adapted to
maximize the information learned from peptide array experi-
ments and can improve peptide design across a wide range of
technologies.

Figure 6. Peptide array S/N can be predicted from a minimal peptide
subsample. A specified number of peptides were randomly selected for
training to predict S/N of the remaining peptides using all physical
properties of both X- and Z-position amino acids. Because of
computational constraints, random forest was used with 100 trees for
training set sizes from 5 to 350. The median Q2 and 80% confidence
intervals are shown for 200 random training sets. For both peptide
arrays, predictive power increases with training size and levels out
around 100 peptides. The optimal trade-off was identified by
normalizing the number of training peptides and finding the sample
size closest to training size 1 and Q2 = 1. The trade-off is shown with
arrows: 87 training peptides for K-array and 111 for H-array, which
demonstrates that machine learning can predict S/N for future peptide
arrays, avoiding costly experiments that screen for high S/N peptides.
A randomized data set performed consistently around Q2 = 0.
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