Microcontact Printing of Alkanethiols on Copper and Its Application in Microfabrication

Younan Xia, Enoch Kim, Milan Mrksich, and George M. Whitesides*

> Department of Chemistry, Harvard University Cambridge, Massachusetts 02138

Received October 3, 1995 Revised Manuscript Received January 16, 1996

Microcontact printing $(\mu CP)^1$ is a convenient technique for generating patterned self-assembled monolayers (SAMs)² of alkanethiolates on gold¹ and silver³ and of alkylsiloxanes on silicon dioxide and glass.^{4,5} Patterned SAMs of hexadecanethiolate on gold and silver can be used directly as ultrathin resists in selective wet etching to fabricate patterned microstructures of these metals with dimensions of >0.2 μ m.^{1,3,6–9} The present study is a natural extension of this technique, since alkanethiols also form organized monolayers on evaporated films of copper.¹⁰ The chemical reactivity of coinage metals increases in the order of Au < Ag < Cu; it is possible to find an etchant that dissolves only Cu but not Ag and Au or only Ag but not Au. For example, aqueous FeCl₃ solution, an etchant that is widely used in semiconductor industry to produce printed circuits of copper,¹¹ etches silver and gold very slowly or not at all.³ This ability to carry out "orthogonal etching" offers an opportunity to generate junctions of Cu-Ag, Cu-Au, and Ag-Au by using a multistep procedure that includes metal evaporation, microcontact printing with hexadecanethiol, and selective wet etching.

(13) Keller, H.; Simak, P.; Schrepp, W.; Dembowski, J. Thin. Solid Films **1994**, 244, 799. Schlenoff, J. B.; Li, M.; Ly, Hiep J. Am. Chem. Soc. 1995, 117, 12528.

100 μm

Figure 1. SEMs of copper films (~50 nm thick) that were patterned with SAMs of hexadecanethiolate and etched in an aqueous FeCl₃ solution for $\sim 2-3$ s. The microparticles (bright dots on SEMs) were CuCl that formed in situ on the bare regions of copper during etching.

Figure 1 shows scanning electron micrographs (SEMs) of copper samples (50 nm thick) that had been patterned with SAMs of hexadecanethiolate and etched in an aqueous FeCl₃ solution (0.012 M) for 2-3 s.¹² The microparticles (~0.5 μ m in size) on the bare regions of copper are CuCl (shown by energy-dispersed spectroscopy, EDS). They were formed in situ during the dissolution of bare copper:

$$Cu(s) + FeCl_3(aq) = CuCl(s) + FeCl_2(aq)$$
 (1)

Addition of HCl or NH₄Cl to the etching solution decreased the rate of etching and helped to dissolve the CuCl precipitate:¹⁴

$$\operatorname{CuCl}(s) + 3\operatorname{Cl}^{-}(\operatorname{aq}) = [\operatorname{CuCl}_{4}]^{3-}(\operatorname{aq})$$
(2)

(19) When we were preparing this revised paper, we noticed that a similar work (µCP of hexadecanethiol on copper and selective etching) was just published: Moffat, T. P.; Yang, H. J. Electrochem. Soc. 1995, 142, L220. The etchant used by these authors was an aqueous solution containing H₂O₂ and HCl.

Kumar, A.; Whitesides, G. M. Appl. Phys. Lett. 1993, 63, 2002.
 Whitesides, G. M.; Laibinis, P. E. Langmuir 1990, 6, 87. Dubois, L. H.; Nuzzo, R. G. Annu. Rev. Phys. Chem. 1992, 43, 437.
 Xia, Y.; Kim, E.; Whitesides, G. M. J. Electrochem. Soc., in press.
 Xia, Y.; Mrksich, M.; Kim, E.; Whitesides, G. M. J. Am. Chem. Soc. 1995, 117, 9576.

⁽⁵⁾ Jeon, N. L.; Nuzzo, R. G.; Xia, Y.; Mrksich, M.; Whitesides, G. M. *Langmuir* **1995**, *11*, 3024.

⁽⁶⁾ Kumar, A.; Biebuyck, H.; Whitesides, G. M. Langmuir 1994, 10, 1498.

⁽⁷⁾ Xia, Y.; Whitesides, G. M. J. Am. Chem. Soc. 1995, 117, 3274.

⁽⁸⁾ Xia, Y.; Whitesides, G. M. Adv. Mater. 1995, 7, 471.
(9) Wilbur, J. L.; Kim, E.; Xia, Y.; Whitesides, G. M. Adv. Mater.

^{1995, 7, 649.} (10) Laibinis, P. E.; Whitesides, G. M. J. Am. Chem. Soc. 1992, 114,

⁹⁰²²

⁽¹¹⁾ Glang, R.; Gregor, L. V. In Handbook of Thin Film Technology, Maissel, L. I., Glang, R., Eds.; McGraw-Hill: New York, 1970; Chapter

⁽¹²⁾ Copper (99.999%, Aldrich) films were prepared by e-beam evaporation onto Ti-primed (99.99%, Aldrich; 2.5 nm thick) Si(100) wafers (N/phosphorous doped, Silicon Sense, Nashua, NH). Microcontact printing was carried out according to published procedures.⁶ Etchings of copper were conducted at room temperature; etching solutions were stirred at 300 rpm. We measured the thickness of hexadecanethiolate SAMs on copper using ellipsometry. SAMs formed by dipping copper films into an \sim 2 mM hexadecanethiol solution in ethanol for ~ 5 s had a thickness of ~ 58 Å (obviously, they were bilayers, for the reasons that are, however, not clear at the present time¹³); SAMs formed by μ CP using a flat PDMS stamp had a thickness of $\sim 20-26$ Å (that is, they were very close to monolayers).

⁽¹⁴⁾ Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed.; John Wiley & Sons: New York, 1988; p 759.

⁽¹⁵⁾ Biebuyck, H.; Whitesides, G. M. Langmuir 1994, 10, 4581.

⁽¹⁶⁾ Dirske, T. P. In Zinc-Silver Oxide Batteries, Fleischer, A., Lander J. J., Eds.; John Wiley & Sons: New York, 1971; p 100.

⁽¹⁷⁾ UV Clean, Model 135500, Boekel Instruments, PA

⁽¹⁸⁾ The XPS of freshly prepared silver films only showed the characteristic peak of Ag(0) (3d, 368.08 eV). When the surfaces of these silver films were oxidized under UV/ozone, the peak of 3d shifted to lower energies: 368.03 eV (1 min); 368.02 eV (5 min), and 367.65 eV (10 min). The characteristic peak (3d) of Ag₂O is at 367.65 eV. In fabricating arrays of junctions, the surfaces of silver films were oxidized for $\sim 6 \text{ min}$.

Figure 2. SEMs of copper films (\sim 50 nm thick) that were patterned with SAMs of hexadecanethiolate and etched in aqueous solutions containing FeCl₃/HCl (A–C) or FeCl₃/NH₄Cl (D-F) for \sim 20 s. Addition of HCl or NH₄Cl to the FeCl₃ solution helped to dissolve the precipitates of CuCl and to generate clean structures of copper. The bright regions are copper covered by the SAM, and the dark regions are Si/SiO₂ where the underivatized copper has dissolved.

Figure 2A–C shows SEMs of test patterns of copper (at three different magnifications) that were fabricated by μ CP with hexadecanethiol, followed by etching of the patterned samples in an aqueous solution containing FeCl₃ (0.012 M) and HCl (0.4–0.8 M) for ~20 s. The

edge resolution of copper structures is ~100 nm (Figure 2C) when using a poly(dimethylsiloxane) (PDMS) stamp cast from lines made in a film of photoresist (Microposit 1813, Shipley) using photolithography; the edge resolutions are ~50 and ~20 nm for the systems of Au/C₁₆-

Communications

Figure 3. (a) SEM image of silver lines (~50 nm thick) that were generated by a combination of μ CP and selective etching in S₂O₃²⁻/ferri/ferrocyanide solution for ~15 s. (b) SEM image of Ag/Ag₂O/Cu junction structures. Samples of (a) were oxidized under ozone for ~6 min, films of copper (~50 nm) were evaporated and patterned by μ CP, followed by selective etching in aqueous FeCl₃/HCl solutions. (c) AFM image of (b) to show 3-D profile.

Chem. Mater., Vol. 8, No. 3, 1996 603

SH¹⁵ and Ag/C₁₆SH,³ respectively. Figure 2D–F shows SEMs of other test patterns of copper that were generated using the combination of μ CP with hexedecanethiol and selective wet etching in another aqueous solution containing FeCl₃ (0.012 M) and NH₄Cl (0.8 M) for ~20 s. The smallest features of copper that have been fabricated using the present procedure are parallel lines of copper that are ~0.6 μ m in width and are separated by ~0.6 μ m (Figure 2F).

Since aqueous FeCl₃/HCl solutions only dissolve bare copper, not bare silver, we have been able to fabricate arrays of Ag/Ag₂O/Cu junctions by a four-stage procedure. (i) Generate silver lines (50 nm thick) on Si/SiO₂ using a combination of μ CP with hexadecanethiol and selective etching of silver in aqueous solutions containing $S_2O_3^{2-}$ and ferri/ferrocyanide (Figure 3a).³ (ii) Form insulating layer of Ag₂O¹⁶ on the surface of these silver lines using UV/ozone treatment.^{17,18} (iii) Evaporate a copper film (50 nm thick) over the whole surface. (iv) Pattern the copper surface with lines of hexadecanethiolate perpendicular to the silver lines and etch in aqueous FeCl₃/HCl solutions (Figure 3b). Each cross point of silver and copper lines represents a junction of metal/insulator/metal. Figure 3c is an AFM image of b to show the profiles of the junctions.

We have demonstrated that μ CP could be used to generate patterned SAMs of alkanethiolates on the surface of evaporated thin films of copper.¹⁹ These patterned SAMs were effective resists in protecting the underlying copper from dissolving in FeCl₃/HCl and FeCl₃/NH₄F solutions. The capability to etch Cu independently of Ag and Au adds another level of useful control to the ability to fabricate microstructures by using SAMs and μ CP.

Acknowledgment. This work was supported in part by ONR and ARPA. This work made use of MRSEC Shared Facilities supported by the National Science Foundation (DMR-9400396). M.M. is grateful to the American Cancer Society for a postdoctoral fellowship. CM950464+