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ABSTRACT: This paper describes the synthesis, characterization,
and modeling of a series of molecules having four protein domains
attached to a central core. The molecules were assembled with the
“megamolecule” strategy, wherein enzymes react with their
covalent inhibitors that are substituted on a linker. Three linkers
were synthesized, where each had four oligo(ethylene glycol)-
based arms terminated in a para-nitrophenyl phosphonate group
that is a covalent inhibitor for cutinase. This enzyme is a serine
hydrolase and reacts efficiently with the phosphonate to give a new ester linkage at the Ser-120 residue in the active site of the
enzyme. Negative-stain transmission electron microscopy (TEM) images confirmed the architecture of the four-armed
megamolecules. These cutinase tetramers were also characterized by X-ray crystallography, which confirmed the active-site
serine-phosphonate linkage by electron-density maps. Molecular dynamics simulations of the tetracutinase megamolecules using
three different force field setups were performed and compared with the TEM observations. Using the Amberff99SB-disp + pH7
force field, the two-dimensional projection distances of the megamolecules were found to agree with the measured dimensions from
TEM. The study described here, which combines high-resolution characterization with molecular dynamics simulations, will lead to
a comprehensive understanding of the molecular structures and dynamics for this new class of molecules.

■ INTRODUCTION

We recently described a strategy to synthesize very large
molecules by joining fusion proteins with multifunctional
linkers.1−5 The reactions occur between a covalent inhibitor on
the linker and its target enzyme domain and proceed in high
yield and with essentially no side products. We have
demonstrated this “megamolecule” approach for the synthesis
of linear1 and cyclic2 molecules, to organize fluorescent
proteins for studies of energy transfer,3 and for the preparation
of antibody mimics.4,5 However, the characterization of these
structures and understanding their conformations and
dynamics are very challenging. Here, we report the synthesis
and comprehensive characterization of a four-armed mega-
molecule with transmission electron microscopy (TEM),6,7 X-
ray crystallography,8,9 and simulation10,11 and demonstrate
how this comprehensive approach contributes to an under-
standing of the structures of this new class of molecules.12−16

In this work, we use the reaction of a four-armed linker with
a cutinase enzyme to generate a tetracutinase product (Scheme
1). The linker is based on a tetra-aza scaffold having four acetic
acid arms, each of which is linked to a para-nitro-
phenylphosphonate (referred to as the DOTA-(amide)4-
(EG)n-tetraphosphonate or DOTP).17−19 The phosphonate
group is an irreversible inhibitor of the fungal esterase cutinase
and reacts with an active-site serine residue (Ser 120) to give a

phosphonate linkage. We further use three versions of this
linker, where the arms are increased in length by incorporating
additional ethylene glycol units. These three linkers were
chosen to evaluate steric interactions that might prevent the
reaction with all four enzyme domainssince shorter linkers
might not accommodate the attachment of four cutinase
domainsand also to determine if they would affect the
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Scheme 1. Reaction of Four Equivalents of the Enzyme
Cutinase with a Four-Armed Linker Presenting a Covalent
Inhibitor for Cutinase Results in a Tetracutinase Product
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overall dimensions and dynamics of the tetracutinase
products.20−22

■ MATERIALS AND METHODS
Materials. All chemical reagents were purchased from Sigma-

Aldrich and Alfa Aesar, unless noted. Commercial materials were
directly used without further purification. BenchMark Protein Ladder
was purchased from Thermo Fisher Scientific. 4−15% Mini-Protean
TGX precast protein gels and 10× Tris/glycine/SDS running buffer
were purchased from Bio-Rad.
Plasmid Construction. Expression plasmids were constructed

using the pET21b(+) backbone in Escherichia coli DH5α (NEB).
Cloning reactions were performed using the Golden Gate method
with BsaI and T4 ligase. Polymerase chain reactions were carried out
using the Q5 master mix (NEB).
Protein Expression and Purification. Proteins were expressed

in the Shuffle T7 Express E. coli cell line (NEB). A stab of stocked
cells was incubated in a 2xYT medium (5 mL) containing
carbenicillin (100 μg/mL) at 30 °C with orbital shaking. After
overnight incubation, the culture was diluted to 500 mL with a 2xYT
medium containing the same concentration of antibiotics in a baffled
flask. The culture was then shaken at 30 °C until the OD600 value of
the cell suspension reached 0.8−1.0. To induce protein expression,
isopropyl β-D-1-thiogalactopyranoside was added to a final concen-
tration of 1 mM. The culture was then shaken in an Innova 44R (New
Brunswick Scientific) incubator at 20 °C for 16−18 h. The cell pellet
was collected by centrifugation and stored at −20 °C. For lysis, the
pellet was resuspended in 1× phosphate-buffered saline (PBS) buffer
and sonicated on ice for 3 min (5 s on, 10 s off). Cell debris was
removed by centrifugation, and the resulting cell lysate was incubated
with 5 mL of HisPur cobalt resin (Thermo Fisher Scientific) in a 50
mL Kontes Flex column (Kimbal Kontes Glassware). The column was
rotated at 4 °C for 1 h and then washed with 1× PBS buffer. The
bound protein was then eluted with PBS buffer containing 150 mM
imidazole and concentrated. Size exclusion chromatography (SEC)
was then carried out on a Hi-Load 16/600 Superdex 200pg column
using an Akta FPLC (GE Healthcare). The purified fractions were
identified by SDS-PAGE pooled and concentrated. The concentration
of protein was calculated based on the absorbance at 280 nm using
the molar absorption coefficient predicted with the ExPASy
ProtParam tool.
Linker Synthesis. The synthesis process of three DOTP

derivatives is described in detail in the Supporting Information. 1H
NMR spectra were recorded on a Bruker AVANCE III HD 500 MHZ
system (TXO 5 mm Prodigy probe w/Z-Gradient). Mass
spectrometry (MS) of the linkers was performed on a Bruker
amaZon SL LC/MS mass spectrometer using electrospray ionization
(ESI) with direct injection and a 5800 MALDI-TOF/TOF mass
spectrometer (AB Sciex, Framingham, MA) using a positive-ion
reflector mode. Stock solutions of the linkers were prepared in
dimethyl sulfoxide at a final concentration of 100 mM.
Synthesis and Purification of Tetracutinases. All protein

assembly reactions were performed in 1× PBS buffer after incubation
with different stoichiometric ratios of proteinlinker for 3 h at room
temperature. After the reaction, solutions were concentrated by an
Amicon Ultra centrifugal filter unit with 10 kDa cutoff. Purification
was carried out as above on a Hi-Load 16/60 Superdex 200 column
using a mobile phase of 1× PBS containing 0.02 wt % NaN3. Pure
fractions were identified by SDS-PAGE on a 4−15% Mini-Protean
TGX precast protein gel. Electrophoresis was run at 200 V for 30 min,
and the gel was stained by Coomassie-R-250. A NanoDrop 2000
UV−Vis spectrophotometer (Thermo Fisher) was used to quantify
the concentration of purified protein.
Protein Mass Spectrometry. Liquid chromatography−MS

(LC−MS) protein analysis was carried out on an Agilent 1200 series
HPLC system with an Agilent 6210A time-of-flight mass spectrom-
eter. Protein samples with a concentration of 1 μM were prepared for
LC−MS by dilution in water. Separation was carried out on a C18
trap column (Waters) with 10 μL of sample for each injection. A

gradient elution method using 5 to 95% acetonitrile in water with
0.1% formic acid and a flow rate of 0.25 mL/min was used. Data
analysis was performed with Agilent Mass Hunter Qualitative Analysis
B.04.00.

Negative-Staining Procedure. Both the samples, Cut4-L and
Cut4-M, were diluted to a concentration of 500 and 200 nM,
respectively, using HEPES buffer (20 mM, pH 7.4, with 150 mM
NaCl). To image the samples by TEM, grids with a continuous
carbon film supported on 300-mesh copper (Ted Pella, CA) were
used. For each sample of Cut4-L and Cut4-M, grids were first plasma
cleaned for 20 s, followed by the application of 3.5 μL of sample. The
sample was absorbed on to the grid for 60 s and blotted using a filter
paper to leave a thin film of the sample on the grid. The grid was then
water washed twice by floating the grid with the sample side on a drop
of distilled water for 2 s and blotting with a filter paper. This was
followed by staining the sample by floating the grid on a drop of
0.75% (w/v) uranyl formate for 2 and 20 s, followed by blotting the
grid each time with a filter paper. Finally, the grid was left to air-dry
completely.

Electron Microscopy. Samples were imaged using an aberration-
corrected JEOL ARM200CF microscope operated at 200 kV, and
images were acquired using a Gatan OneView CMOS camera (Gatan,
CA). Around 100 micrographs were collected for each sample, Cut4-L
and Cut4-M with a pixel size of 1.8 Å. Images were collected with an
exposure time of 1 s using the smallest size condenser aperture (10
μm) to obtain the most coherent beam and defocus (C1) was varied
from 1.5 to 2.5 μm. The contrast transfer function parameters were
estimated using CTFFIND-4.1.13,23 and the micrographs were
screened for drift and astigmatism. Two-dimensional (2D) classi-
fication was performed using Relion 3.0.7.24 For this, particles were
picked using the Autopick procedure by the Laplacian-of-Gaussian
filter25 in Relion and later screened manually to give 2989 particles
from 96 selected micrographs for Cut4-L and 6452 particles from 87
selected micrographs for Cut4-M. These particles were extracted and
subjected to reference-free 2D classification.

Model Generation of the Three-Dimensional Structure.
GaussianView26 was used to generate the three-dimensional (3D)
structure of all three linkers. The energy minimization of the linker
was performed with quantum mechanism simulations by Gaus-
sian0927 to acquire an extended regular tetrahedron confirmation.
Four cutinases (PDB ID: 1CEX) were manually connected to each
linker arm at the catalytically active Ser120. The linker was modeled
in its tetrahedron conformation to best avoid steric clash among the
four cutinases.

Amberff14SB + TIP3P Force Field.28,29 The DOTP linkers
were constructed as an unnatural amino acid. The partial charges were
obtained from the Ambertools18/antechamber AM1-bcc charge, and
the vdw and the bonded parameters are constructed from Amber14SB
and AMBERgaff.30,31 The topology and parameters of each cutinase
were generated from AMBER14SB. Then, the system was solvated in
a TIP3P water box with an additional 9.0 Å shell on each side. Cl−

ions were added to neutralize the net charge of the whole system. To
generate the model under pH 5.0 conditions, Propka3.0 was used to
obtain the protonation state of each residue and the organic
linker.32,33

Amberff99SB-Disp Force Field.34 With the new force field
parameters obtained from DE Shaw research, the exact same
procedure aforementioned was followed to construct the Amber
input files.

Simulation Details. All simulations were conducted by a GPU
version of AMBER18 PMEMD using the University of Chicago’s
Research Computing Center (RCC) Midway supercomputer.35,36

Simulation details of each system are also listed in Table S3. For each
simulation, a 500-step minimization, 1 ns restrained NVT equilibrium,
and 1 ns NPT equilibrium were performed before the production runs
at 300 K. ∼200 ns × 4 replica simulations were performed for each
tetracutinase system, and a 200 ns simulation was performed for each
tricutinase system.

Conformation Analysis of the MD Simulations. Cpptraj and
mdtraj were used to calculate all the MD properties presented.37,38
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The first 100 ns with Amberff14SB + tip3p at pH7 and 50 ns for the
other simulations were excluded as equilibration, and the trajectory
averages of all characteristics for each model are reported in Table S3.
To compare the molecule size in simulation with the TEM image
straightforwardly, we performed a projection of the heavy atoms of
each snapshot in the trajectory from the 3D space to a few randomly
defined 2D surfaces. Then, all the heavy atoms were mapped into a 40
× 40 grid with a cell size of 4 Å × 4 Å. Then, the center-to-center
distance between the furthest-separated nonempty cells was
calculated. This process was repeated 20 times for each frame in
the trajectory and the largest distance among the 20 was taken as the
molecular size. To quantify whether a snapshot in the trajectory was a
regular tetrahedron or a planar square, we measured all 12 improper
dihedral angles defined by four Ser120 CA atoms. As a reference, the
dihedral angle of the methane molecule with a regular tetrahedron
conformation is 1.23 rad and the dihedral angle of a planar square is 0
or π. To explain why the S linker is not able to accommodate a
tetracutinase, we measured the distribution of minimum distances
between the free linker tail (phosphate atom) and the other three
cutinase proteins (CA atoms) along the tricutinase simulation
trajectory as an extension capability, and the distribution of minimum
distances between the one linker tail (phosphate atom) and the other
three cutinases (CA atoms) in the tetracutinase simulation. Supposing
the bumpy protein surface, using the real minimum would be
unrealistic. Thus, for each snapshot, the average value of the 15
minimum distances was taken. The most extended simulation
(Amberff99SB-disp) was used to calculate the extension capability
and the most compact simulation (Amberff14SB/TIP3P) was used
for the minimum distance required.
Crystallization and Structure Determination of a Tetra-

meric Megamolecule. For data collection, crystals of tetracutinase
were flash frozen with liquid nitrogen using 10% glycerol in the
mother liquor as a cryoprotectant. X-ray diffraction data were
collected at 100 K at the Life Sciences Collaborative Access Team
(LS-CAT) beamlines at the Advanced Photon Source (APS),
Argonne National Laboratory, using a Rayonix CCD detector
(Table S2). Data processing was conducted by XDS39 and
AIMLESS.40 The crystals showed anisotropic diffraction, extending
to 1.27 Å (Cut4-L) and 1.36 Å (Cut4-M) in the best direction, and the
data were further processed with the Staraniso server41 to produce an
anisotropic data set. The crystal structures of tetracutinase were
solved by molecular replacement using a cutinase molecule42 (PDB
ID 2CUT) as a search model. All iterative rounds of model building
and refinement were performed with Coot43 and Refmac.44 For Cut4-
L crystals, the final model consists of one cutinase monomer (residues
17−212), one PEG linker with 8 atoms visible around the covalent
bond formed with serine 120, and one linker region corresponding to
the PEG region and 185 water molecules and has a R/Rfree = 0.175/
0.192−1.267 Å for the anisotropic data set. The model has excellent
geometry, with a root-mean-square deviation of 0.014 Å and 1.97° for
bonds and angles, respectively, and 98.97% in the favored region of
the Ramachandran plot. For Cut4-M crystals, the final model consists
of one cutinase monomer (residues 16−212) and one M linker with
only 8 atoms visible around the covalent bond formed with serine 120
and 202 water molecules and has a R/Rfree = 0.186/0.205−1.359 Å for
the anisotropic data set. The model has excellent geometry, with a
root-mean-square deviation of 0.012 Å and 1.86° for bonds and
angles, respectively, and 98.97% in the favored region of the
Ramachandran plot.

■ RESULTS AND DISCUSSION
Design and Synthesis of Linkers. The three linkers we

use are shown in Figure 1, where each is based on a 1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) core,
which is symmetrically substituted with four oligo(ethylene
glycol)-based arms that terminate in a phosphonate group. The
first linker has the longest arm and includes three ethylene
glycol groups (linker 1); the second has two fewer ethylene
glycol groups (linker 2); and the third also has one ethylene

glycol group but a shorter alkyl chain that tethers the
phosphonate group (linker 3). The synthesis of these three
linkers was straightforward and started with the activation of
the four acids of DOTA and treatment with an excess of
BocNH-PEGm-CH2CH2NH2 to give the tetrasubstituted core
and finally deprotection with TFA to reveal the four amines.
The tetraamine was then treated with 4-nitrophenyl-ethyl-
(carboxyalkyl)phosphonate after activation with EDC/NHS to
give the final products 1−3 (see Supporting Information for
details).

Synthesis and Characterization of Four-Armed
Megamolecules. Cutinase was expressed in E. coli, as
described previously, as a C-terminal 6xHis-tag fusion.45 The
expressed cutinase has a molecular weight of 23,380 Da and an
approximate size of 45 × 30 × 30 Å3 in a compact domain.46

The cutinase monomer was purified using SEC and showed
one clear band of 23 kDa on SDS-PAGE (Figure 2A). The
yield of cutinase was approximately 5 mg/L after purification
by cobalt-immobilized metal affinity chromatography and SEC
(Figure 2B).
Cutinase is irreversibly inhibited by para-nitrophenyl

phosphonate groups through esterification of the Ser-120
residue in the active site.45 Hence, we treated linker 1 (5 μM)
with an excess of cutinase (50 μM) in a PBS solution for 3 h
and analyzed the reaction products with SDS-PAGE (Figures
2A and S1). For the reaction of cutinase and linker 1, we
analyzed the crude reaction mixture and observed the
tetrameric cutinase product (Cut4-L, for the long linker) as a
clear band at the expected mass of 95 kDa. The gel also
revealed bands for free cutinase and a small amount of dimeric
and trimeric cutinase intermediates. The Cut4-L product was
easily purified by SEC (Figure 2B) and showed a single band
in the gel (Figure 2A). Furthermore, ESI-MS analysis of the
product gave a mass of 95,375 Da, in excellent agreement with
the calculated mass (Figure 2C, Table S1). We then repeated
this reaction using the medium-length linker 2 where SDS-
PAGE of the crude mixture again showed the desired
tetracutinase product (Cut4-M, Figures 2A and S2) together
with small amounts of the intermediates. Again, the product
could be readily purified with SEC and gave a mass that was

Figure 1. Synthetic route for preparing linker molecules with long,
medium, and short arms (L, M, and S).
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consistent with its expected mass. However, when we repeated
the reaction using the shortest linker 3, the gel revealed that no
tetracutinase product was detected. We repeated this reaction
using four-fold higher concentrations of the reactants and still
could not detect any final product (Figures 2A and S3).
Instead, we observed only di- and tricutinase intermediates.
Hence, we reason that linker 3, for steric reasons, cannot
accommodate the attachment of four enzyme domains, and in
the work that follows, we only address Cut4-L and Cut4-M.
Electron Microscopy Reveals the Overall Architecture

of Cut4-L and Cut4-M. We next used TEM to directly image
the two tetracutinase products, which revealed the overall
architecture of Cut4-L and Cut4-M. The proteins were applied
to a grid and stained with uranyl formate at a pH of ∼5 to
enhance the contrast and to stabilize the tetracutinases by
rapid fixation.47,48 TEM images for Cut4-L and Cut4-M reveal
the four-lobed structures throughout the imaging area, where

each of these lobes corresponds to one cutinase domain
(Figures 3, S4, and S5). These images are consistent with the
expected four-armed structure of the megamolecules and
demonstrate that the resolution level necessary for their
structural analysis can be easily achieved through the negative-
stain imaging used in this study.49

In order to improve the signal-to-noise ratio of the TEM
images, we obtained reference-free class averages using the
method described in Figures S6 and S7. 2D classification of
Cut4-L and Cut4-M both gave 12 unique orientations of the
tetrameric structure (Figure 3B,F) with sufficient signal-to-
noise; data collection was unbiased and all classes obtained are
shown in Figure 3. The 2D class with a fully extended top view
was selected for measuring dimensions of the Cut4-L and Cut4-
M molecules, as this most closely resembles the orientation
analyzed by molecular dynamics (MD) simulations. The size of
Cut4-L was determined to be ∼113 Å diagonally and ∼92 Å

Figure 2. Synthesis, purification, and characterization of four-armed megamolecules. (A) SDS-PAGE analysis of cutinase monomer, reaction
products with the linker, and purified tetracutinases. Cutinase was incubated with linkers 1, 2, and 3 for 3 h, respectively, at cutinase concentrations
of 50, 50, and 200 μM, respectively. The cutinase/linker molar ratio was set to 10/1 for each reaction. (B) Size-exclusion chromatograms of
cutinase, Cut4-L, and Cut4-M. (C) Deconvoluted ESI-MS spectra of cutinase, Cut4-L, and Cut4-M.

Figure 3. Negative stain TEM exhibits the architecture of the four-armed megamolecules. (A) Representative TEM image of the negatively stained
Cut4-L molecule. Scale bar represents 20 nm. (B) Reference-free 2D class averages of all the particles picked from the micrographs of Cut4-L.
Percentage of particles in each class is mentioned. Scale bar represents 50 Å. (C) Enlarged view of one of the classes [red box in (B), fully extended
top view] of the Cut4-L molecule. Scale bar represents 50 Å. (D) Coordinates of four Cutinase molecules (PDB ID: 1CEX) overlaid on the 2D
average from (C) to represent the architecture of the Cut4-L molecule. (E−H) The same TEM characterization and analysis corresponding to (A−
D) for Cut4-M, respectively. Insets in (A,E) show representative orientations of Cut4-L and Cut4-M in the raw TEM image.
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laterally (Figure 3C). Similarly, the size of Cut4-M was ∼106 Å
diagonally and ∼89 Å laterally (Figure 3G). For both
analogues, the size of a single cutinase domain was measured
to be ∼40 Å, which matched the size observed in a prior X-ray
crystallographic study (PDB ID: 1CEX) and with overlays of
these structures shown in Figure 3D,H. These measurements
include an error range of 4 Å due to the grain size of the
negative stain. Because both gel electrophoresis and ESI-MS
(Figure 2A,C) confirmed that the sample was homogeneous,
the different projections in the 2D classes are assigned to
different orientations of the megamolecules (and not
contamination by intermediates in the synthesis). Although
negative staining may not accurately represent the distribution
of specific conformations due to preferential adherence to the
grid surface, the visualized orientations are representative of
the possible protein configurations. The signal-to-noise ratio is
clearly improved by class-averaging (see inset in Figure 3A,B),
leading to improved visualization and size estimation. We also
confirm that TEM of the cutinase monomer (prior to reaction
with the linker) showed a monodisperse collection of proteins
having a single lobe (Figure S8).
X-ray Crystallography of Tetracutinase. We also used

X-ray crystallography to obtain high-resolution structures of
Cut4-L and Cut4-M. Crystals were grown at 25 °C by vapor
diffusion in a sitting-drop format using 150 mM ammonium
sulfate, 0.1 M MES (pH 5.5), and 25% PEG 4000 as a
precipitant. Single crystals readily grew from a sample with a
megamolecule concentration of 5 mg/mL. X-ray diffraction
data were collected at the Argonne APS (Table S2) and were
processed using XDS39 and AIMLESS.40 The structures of the
tetracutinase molecules were resolved to ∼1.3 Å and clearly
show the expected phosphonate linkage between Ser-120 of
the enzyme and the linker (Figure 4A). This modification is
very similar to the one observed in cutinase inhibited by
diethyl-p-nitrophenyl phosphate42 (PDB ID 2CUT), a
molecule that was used for molecular replacement, with the

exception that the L/M linker molecule has an oxygen atom
replaced by a carbon atom in the linker. Interestingly, the
tetracutinase molecule crystallizes with the same cell
parameters and space group as cutinase covalently modified
with an organometallic phosphonate-pincer-metal complex
(PDB ID 3EF3),50 even though the crystallization conditions
and the covalently attached group at Ser 120 are different. In
the vicinity of the active site, the hydrogen-bond interactions
with Ser42 and Gln 121 and the hydrogen bond between the
imidazole ring of His 188 and the gamma oxygen of Ser 120
are preserved, as was observed in 2CUT and 3EF3. Clearly, the
replacement of an oxygen molecule by a carbon molecule in
the covalent linker region does not affect the overall
conformation of the active site of the protein at this resolution.
There is, however, a slight difference in the planarity of the
atoms for the L and M linkers due to the introduction of the
carbon, consistent with geometries expected for these atoms.
Similar to other deposited structures, we observe a covalent
bond between Cys 31 and Cys 109.
Interestingly, the Cut4-L structure shows clear density for

what we interpret as a portion of the ethylene glycol linker.
Even though the L- and M-modified tetracutinases were
crystallized in the presence of PEG 4000, we only observe the
PEG molecule in complex with Cut4-L. Furthermore, a
structure of the pincer/cutinase complex50 (PDB ID 3EF3)
was also crystallized in PEG and shows the same unit cell but
does not contain a PEG molecule. These observations suggest
that the PEG molecule observed in the Cut4-L complex is a
part of the linker and does not represent the ethylene glycol
unit that derives from the crystallization mix. Finally, because
this PEG linker is associated with the surface of cutinase
between two symmetry-related molecules (and quite distal
from Ser-120), we believe it represents a different arm of the
linker.
We note that our use of gadolinium was critical for achieving

ordered crystals. The original conditions that lacked
gadolinium gave crystals characterized by stacked plates.
Molecular replacement yielded clear solutions for these
original crystals, but the packing was unusual in that the 2D
layers were connected by head-to-head cutinase dimers, but
there was a wide gap between adjacent layers consistent with a
disordered layer. The addition of gadolinium promoted order
in a different packing, leading to 3D crystals amenable for X-
ray diffraction analysis (Figure S9).
The Cut4-L/M megamolecules are more compact in the

crystal than observed by TEM (Figures 4B and S10). In the
crystals, we reason that packing forces led to a collapse of the
linker regions. Nevertheless, extracting dimers of tetracutinase
from the symmetry-related molecules in the crystal showed
that these dimers are consistent in geometry and orientation
with those observed in images obtained from TEM.
Intermolecular phosphate distances for possible packed
tetramers of Cut4-L and Cut4-M were measured in the crystals,
which matched the average distance from the simulation (see
below and Figures 4B, S10, and S11). The tetrameric
structures in the crystals are distorted and related to the
conformational flexibility of the linker and phase transition
during crystallization. The distance between the active site of
one molecule and the active site from a symmetry-related
molecule is ∼15 Å and would allow for the presence of the
linker. Cut4-L has a longer linker region than Cut4-M and it
appears that the protein accommodates these additional atoms

Figure 4. Representative structures of Cut4-L obtained by X-ray
crystallography. (A) Stick diagram of the Ser-120 residue of cutinase
and its reaction with L linker 1 via phosphonylation. The mesh
corresponds to the 2mF0-DFc electron-density map. (B) Overall
structure of Cut4-L is displayed on top view and side view. The
phosphonate binding sites are colored orange. Intermolecular
phosphate distances are measured for a possible packed tetramer of
Cut4-L.
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by binding a portion of the linker in between molecules, as
mentioned above.
Simulation of Protein Assembly. To gain insights into

the equilibrium and dynamical behavior of the tetracutinase
megamolecules, we prepared atomistic models and conducted
MD simulations for the three structures derived from the L, M,
and S linkers. For each megamolecule, we generated MD
simulations over 200 ns, with four replicas each under three
different force field setups, Amberff14SB + TIP3P at pH7,
Amberff14SB + TIP3P at pH5, and Amberff99SB-disp at
pH7.28,29,34

Compared to the gradient trend in molecular sizes from
Cut4-L to Cut4-M observed in TEM, neither Amberff14SB +
TIP3P + pH7 nor Amberff14SB + TIP3P + pH5 simulations
were capable of reproducing the TEM molecular assembly.
The Amberff14SB + TIP3P + pH7 simulations display a
conformation where all cutinase molecules are aggregated and
in direct contact with the others for all linker sizes. At the same
time, the Amberff14SB + TIP3P + pH5 simulation, which
follows the sample preparation pH used in TEM, presents a
noticeable size gradient, albeit not as significant as the TEM
observation.
Thus, we evaluated a new force field, Amberff99SB-disp,

recently developed from Amberff99SB-ildn + TIP4PD to
increase the solvation stability and flexibility of intrinsically
disordered proteins.34 By modifying the charge and Lennard-
Jones parameters of the water molecules together with side-
chain torsions of selected residues, the force field increases the
protein solvation stability and thus reduces the improper
aggregation among solute molecules. In contrast to
Amberff14SB + TIP3P + pH7 and Amberff14SB + TIP3P +
pH5, the Amberff99SB-disp simulations reproduce the TEM-
observed sizes and shapes for both Cut4-L and Cut4-M. Details
of the comparison of the MD simulation results with all three
force field setups are shown in Table S3 and Figures S12 and
S13.
To directly characterize the size of the megamolecules from

the MD simulations, we calculated the molecular size and the
radius of gyration for all simulations (Figure 5A).51−54 The
molecular size calculation, which corresponds to the maximum
atom−atom distance on a projected 2D surface, is a close
analogue to the molecular size measured on the 2D TEM
images. The molecular sizes of Cut4-L and Cut4-M in
simulations are 117.7 ± 6.4 and 101.6 ± 7.8 Å, respectively,
which agree with the distances of 113 and 106 Å found by
TEM. More importantly, the Amberff99SB-disp simulation
correctly captures the increase in molecular size from Cut4-M
to Cut4-L observed in TEM, whereas the other two force field
setups do not. In all MD simulations of Cut4-L and Cut4-M,
cutinase monomers are neither in direct contact nor separated
by fully extended linkers but instead display an intermediate
extended conformation of the linkers. The stable molecular
size is approximately 30−40 Å smaller than the maximally
extended conformation that is used as the starting config-
uration for the simulations. We surmise that this partially
extended conformation is responsible for the dark region at the
center of the Cut4-L molecule in the TEM images (Figure 3C).
The overall shape of all tetracutinases, Cut4-L, Cut4-M, and

Cut4-S, under Amberff99SB-disp + pH7 approximates a regular
tetrahedron (Figure 5B), which minimizes the intercutinase
interactions. To quantify their overall shapes and fluctuations,
we measured the linker distances in the radial orientation
which represent how far each cutinase extends from the core of

the organic linkerand the tetrahedron regularity in the
angular orientation, which measures all possible improper
dihedral angles from four cutinase molecules. Going from
Cut4-L, Cut4-M, to Cut4-S, the linker fluctuations decrease
with decreasing length, indicating that the longest linker L can
sample more conformational space with a longer cutinase-core
distance than can a shorter linker S. On the other hand, the
decrease in the fluctuation of the tetrahedron regularity from
Cut4-L to Cut4-M and Cut4-S suggests an increasing stability
promoted by direct intercutinase interactions.
In addition to the characterization just described, the MD

simulations also explain why the shortest linker S can react
with only three cutinases and is not able to form a tetramer.
The trimer-to-tetramer reaction can only occur if the extension
capability, which describes the maximum extension of the
fourth arm in the tricutinase intermediate from the other three
connected cutinases, exceeds the minimum distance required
to avoid the steric clash. If it does not, the reaction steric
hindrance does not allow this last reaction. The extension
capability and the minimum distances required for the reaction
can be calculated from tricutinase and the tetracutinase MD
simulations. With the additional simulations of tricutinases,
Cut3-S and Cut3-M, those comparisons were performed and
are shown in Figure 6. For Cut3-S, the extension capability has
no overlap with the minimum distance required for another
connection and hence does not permit the final reaction. For
Cut3-M, the linker arm of M is just long enough to have some
overlap, which indicates that the reaction is possible. Hence,
this analysis is consistent with the observed reactivity.
The tricutinase megamolecule also presents a different

configuration from the tetracutinase megamolecule. Both Cut3-
M and Cut3-S prefer a trigonal planar configuration, which is
also the best configuration to maximize the separation of the
cutinase domains. The TEM observations, along with
tricutinase and the tetracutinase MD simulations, all imply

Figure 5. (A) Molecular size (outer) and radius of gyration (inner)
measurements in the MD simulations with the force field setup of
Amberff99SB-disp + pH7 for Cut4-L, Cut4-M, and Cut4-S. A total of
four replicas of the simulation are colored differently. (B) Linker
distance (outer) and tetrahedron regularity (inner) measurements of
MD simulations with the model of Amberff99SB-disp + pH7 for Cut4-
L, Cut4-M, and Cut4-S. The four replicas of the simulation are colored
differently. The black line in the inner plot corresponds to the value of
a regular tetrahedron.
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separation over aggregation for cutinase monomers in the
megamolecule.

■ DISCUSSION
Our development of megamolecules offers a new approach to
preparing extremely large yet structurally homogeneous
molecules.55−57 The use of reactions between enzymes and
their covalent inhibitors allows for the efficient and modular
assembly of protein building blocks into a broad range of
architecturesincluding linear, cyclic, and branched scaf-
foldsby choosing linker molecules with distinct symme-
tries.58−60 The approach is appealing because these scaffolds
can be further functionalized with diverse groups including
proteins, molecules, nanoparticles, and others.61−65 These
functions can be introduced by fusing proteins to the enzymes
that are used to assemble the scaffolds. In this way, the enzyme
domain becomes a structural element of the scaffold and the
functional domain is attached to the scaffold, as we have
demonstrated with the preparation of antibody mimics and
antibody−enzyme conjugates.4,5 Another benefit of the
megamolecule approach is that functional molecules can also
be attached to the linkers that are used in the assembly,
allowing a broader range of chemistries to introduce those
groups that are compatible with protein substrates.
However, our understanding of the structures and dynamics

of this new class of molecules is still at an early stage, in part
because the methods that have been important for under-
standing small molecules and proteins are challenging to apply
to these large structures. To address this challenge, we
demonstrate in this paper how high-resolution character-
izationusing both TEM and X-ray crystallographycan be
combined with MD simulations to gain insights into the
structures of these molecules and to understand how linker
length affects the overall structure as well as aiding the design
of linkers that will accommodate a target structure. Indeed, the
correspondence of the imaging results and the MD simulations
for the sizes of Cut4-L and Cut4-M is significant, as is the
ability of the MD simulations to predict that steric factors
would prevent the formation of Cut4-S.

■ CONCLUSIONS
This work demonstrates the synthesis, characterization, and
simulation of structurally defined four-armed megamolecules.
The assembly of megamolecules through the reactions of
enzymes and irreversible inhibitors has the benefits of high
specificity and yield in each step of the synthesis. Moreover,
the development of linkers that are functionalized with
different irreversible inhibitors allows the preparation of
complex megamolecule architectures. This work shows how
the combination of high-resolution characterization and MD
simulations can guide the development of megamolecules
having defined conformations and dynamics. We believe that
the megamolecules will find applications in many areas,66−70

including in the development of antibody mimics for
therapeutics.
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