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ABSTRACT: This paper presents a solid-phase strategy to efficiently assemble multiprotein scaftolds—known as megamolecules—
without the need for protecting groups and with precisely defined nanoscale architectures. The megamolecules are assembled
through sequential reactions of linkers that present irreversible inhibitors for enzymes and fusion proteins containing the enzyme
domains. Here, a fusion protein containing an N-terminal cutinase and a C-terminal SnapTag domain react with an ethyl p-
nitrophenyl phosphonate (pNPP) or a chloro-pyrimidine (CP) group, respectively, to give covalent products. By starting with resin
beads that are functionalized with benzylguanine, a series of reactions lead to linear, branched, and dendritic structures that are
released from the solid support by addition of TEV protease and that have sizes up to approximately 25 nm.

egamolecules are modular structures that are assembled

by the reaction of fusion proteins and linkers." The
reactions occur between an enzyme domain in the fusion with
a covalent inhibitor and have the benefit that they are rapid,
proceed in high yield, and are highly selective.” We previously
reported the solution-phase synthesis of precisely defined
linear and cyclic structures with molecular weights up to 300
kDa and dimensions of approximately 20 nm,” and we also
reported the use of megamolecule scaffolds to organize
fluorescent proteins for studies of energy transfer." However,
the preparation of the megamolecules required size exclusion
chromatography (SEC) to purify the intermediates after each
reaction step and made it difficult to efficiently prepare larger
numbers of structures. Here, we describe a solid-phase
synthesis method that enables the rapid assembly of
megamolecules.

The syntheses we demonstrate are based on the reaction of
the serine esterase cutinase (C) with an ethyl p-nitrophenyl
phosphonate (pNPP) group, which covalently inhibits the
enzyme through esterification of the Ser120 active site residue’
and of SnapTag (S) with a chloro-pyrimidine (CP) group that
reactés7with the catalytic Cys14S residue in the enzyme (Figure
1A).%

We initiate the solid-phase synthesis by treating highly cross-
linked agarose (4%) magnetic resin beads that are function-
alized with benzylguanine (BG) groups® with a cutinase-
SnapTag fusion protein (referred to as CS), which results in
the attachment of the SnapTag domain to the bead.

We then wash the beads with buffer and add a bifunctional
linker having one CP and one pNPP group (Figure 1B). In this
reaction, the free cutinase domain anchored to the bead reacts
with the linker, which results in a terminal CP group that is
available for a subsequent coupling step with another CS
protein. This cycle—the addition of a fusion protein followed
by a linker—can be repeated to synthesize megamolecules of
increasing length.

We applied this strategy to synthesize a pentameric
megamolecule, and which required nine individual reactions.
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However, the first step in the synthesis used a fusion protein
that included a TEV protease sequence (ENLYFQG) in the
linker that connected the two protein domains (we refer to this
fusion as C*S) (Figure S2).” The fusion protein used in
subsequent steps omitted the protease sequence in the linker
and is referred to as CS (Figure 2A). This strategy allowed us
to treat the beads with TEV protease at the end of the
synthesis to release megamolecules from the solid support and
then determine the purity of the intermediates and final
product. In the formation of the tetrameric structure (C—SC—
SC—S) and the pentameric structure (C—SC—SC—SC—-S), we
capped the scaffold with a monovalent SnapTag domain, which
prevented further elaboration.

Figure 2B shows sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) analysis of the unpurified
intermediates and products in the construction of the linear
pentamer. We also confirmed the masses of these products by
electrospray ionization mass spectrometry (ESI-MS) (Figure
2C, Table S2). We can infer from the highest density band in
each gel that the addition of TEV protease at the conclusion of
the synthesis selectively cleaves the linear scaffold from the
solid support, liberating a single megamolecule in high purity.
Further, imaging by transmission electron microscopy (TEM)
reveals species of 19 nm (Figure 2D, Figure S6) and 25 nm
(Figure 2E, Figure S7) in length for the tetramer and
pentameric products, respectively. The range of structures
observed by TEM reveal that the molecules are not rigid, but
have conformational flexibility, and is consistent with previous
work that demonstrates that linear megamolecules are
conformationally flexible.*
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Figure 1. Enzymatic reactions and linkers. (A) Top: Cutinase reacting with a p-nitrophenyl phosphonate (pNPP) group. Bottom: SnapTag
irreversibly reacting with a chloro-pyrimidine (CP) inhibitor. (B) Bifunctional linker having an ethylene glycol (EG) backbone with pNPP (blue)
and a CP (yellow) groups. (C) Trifunctional linker terminated in one pNPP and two CP covalent inhibitors with an EG backbone.

One important aspect of this solid-phase synthesis method is
that it does not require the use of protecting groups and
deprotection steps,””*'? which are necessary in the solid-
phase synthesis of DNA,'"'* peptides,'”'* oligosacchar-
ides,">'® and other molecules,'” ™"’ though we recognize
there are a larger number of monomers used in those
syntheses. This is because the covalent inhibitors on the
linkers are poorly reactive with functional groups found on the
surface of proteins and only react efficiently when they are
present in the active site of the target enzyme. Indeed, this
“self-activation” confers a high level of specificity in the
reactions and eliminates the need for protecting groups.”’

Recently, Howarth and co-workers constructed protein
scaffolds using a similar approach on a solid support.”!
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However, the molecules were anchored to the support
noncovalently, which can result in molecules washing off of
the support between reactions. Additionally, the method is
limited to the assembly of linear structures, as the domains are
connected by isopeptide bonds.”> We next demonstrate that
megamolecules can overcome this restriction by using linkers
that give rise to branched megamolecules and, by extension, a
range of more complex structures.

We synthesized a heterotrifunctional linker that contains a
terminal pNPP and two terminal CP ligands, and which is
described in the Supporting Information (Figure 1C, Figure
S1). We treated the beads with C*S and then added the
trifunctional linker to branch the scaffold, doubling the number
of reaction sites per megamolecule chain. We then added an
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Figure 2. Solid-phase synthesis of linear megamolecules on a resin bead. (A) C*S is added to the BG functional group (yellow) on the agarose
resin where SnapTag (yellow fusion domain) is pulled down to the surface. After washing, cutinase (blue fusion domain) is irreversibly reacted with
a heterobifunctional linker (blue end, pNPP; yellow end, CP). The beads are washed, and the next protein (CS) is added to the linear scaffold. The
construct is cleaved from the resin by proteolysis (green scissors, TEV protease) at the TEV protease site on the first bound protein (green circle).
(B) SDS-PAGE characterization. (C) ESI-MS data. (D) TEM of the linear tetramer with insets of schemes and a selected image. (E) TEM of the

linear pentamer with insets.

excess of CS to react with the two pendant CP groups on the
beads, thus forming a first generation (G1) dendron. We
continued the synthesis by adding 2 equiv of trifunctional
linker to again double the number of reactive sites per chain
and then finished the construction by adding 4 equivalents of
the monomeric SnapTag domain. This resulted in a second
generation (G2) dendron (Figure 3A). Analysis of the crude
products by SDS-PAGE in Figure 3B reveals bands that
migrate with the expected mobility of the constructs in the gel.
The molecular weights calculated for each megamolecule are
also in agreement with those obtained by mass spectrometry
(Figure 3C, Table S2).

We note that while we expanded the number of active sites
on the megamolecule through branching, we did not observe
side products arising from intermolecular reactions between
neighboring chains. This demonstrates the orthogonality and
specificity of the enzyme—inhibitor reactions used in our
megamolecule synthesis.

We characterized the size of the branched structures with
TEM, taking into consideration that negative staining and
drying procedures used during grid preparation often induce
morphological changes to the molecules such as reducing their
apparent size (Figure 3D).*
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We also asked whether there was a relationship between the
purity of the product and the loading density of the first fusion
protein on the resin. Because the branch point would increase
the size of the megamolecule, steric hindrance between
neighboring strands could become significant for higher
synthesis densities. We found this to be the case. We diluted
the synthesis sites by introducing monomeric SnapTag protein
during the coupling of the C*S fusion protein, and found that
as more monomeric SnapTag is added, there was a decrease in
the amount of product formed, but a corresponding improve-
ment in the purity for the full-length product. This suggests
that adjusting the functional surface density of the bead
minimized steric congestion between scaffolds as the structures
were extended (Figure S4).

Megamolecules are a new class of structures that are exciting
because they are very large yet atomically perfectly defined.
The modular synthesis allows the incorporation of a variety of
functional domains, including organic/inorganic molecules,
protein domains, and nucleic acids, among other groups. We
believe that the controlled fabrication of megamolecule
scaffolds is relevant to the field of self-assembled viral
nanoparticles,”~** enzyme prodrug therapy,””*° and ana-
logues of therapeutic antibodies. The ability to prepare
candidate structures with solid phase approaches will expand
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Figure 3. Construction of branched megamolecules. (A) Scheme for
the synthesis of dendrons using a heterotrifunctional linker. (B) SDS-
PAGE characterization of the panel directly from the crude reaction
mixture and without purification by chromatography. (C) ESI-MS
spectra of a G1 dendron and a G2 dendron. (D) TEM character-
ization of the structures with insets of schemes and selected images.

the rate at which megamolecules can be tested and will
increase their development for a variety of applications.
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