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Abstract

Focal adhesions (FAs) are large, multi-protein complexes that provide a mechanical link between the cytoskeletal

contractile machinery and the extracellular matrix. They exhibit mechanosensitive properties; they self-assemble upon

application of pulling forces and dissociate when these forces are decreased. We rationalize this mechano-sensitivity from

thermodynamic considerations and develop a continuum framework in which the cytoskeletal contractile forces generated

by stress fibers drive the assembly of the FA multi-protein complexes. The FA model has three essential features: (i) the low

and high affinity integrins co-exist in thermodynamic equilibrium, (ii) the low affinity integrins within the plasma

membrane are mobile, and (iii) the contractile forces generated by the stress fibers are in mechanical equilibrium and

change the free energies of the integrins. A general two-dimensional framework is presented and the essential features of

the model illustrated using one-dimensional examples. Consistent with observations, the coupled stress fiber and FA model

predict that (a) the FAs concentrate around the periphery of the cell; (b) the fraction of the cell covered by FAs increases

with decreasing cell size while the total FA intensity increases with increasing cell size; and (c) the FA intensity decreases

substantially when cell contractility is curtailed.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Cells interact with substrates coated with extracellular matrix proteins (ECM) through the formation of
multi-molecular complexes referred to as focal adhesions (FAs). The FAs form the mechanical link between
the cytoskeleton within the cell and the ECM. They are typically 1–3 mm in extent. The FA comprises a layer
of trans-membrane integrin molecules and a multi-protein sub-membrane plaque. The integrins are integral
membrane hetero-dimeric proteins with extracellular domains that bind to ligands attached to the substrate, as
e front matter r 2007 Elsevier Ltd. All rights reserved.
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well as intracellular domains that provide docking sites for the assembly of the plaque. In turn, the plaque
consists of many different proteins including talin, a-actinin, filamin, FA kinase, vinculin, paxillin, and tensin.
Some of these proteins form the structural scaffold of the adhesion site, while others mediate signaling
processes. This FA plaque also serves as a platform for nucleation and development of stress fibers within the
cell (bundles of actin filaments containing myosin and various actin-binding proteins). The stress fibers are
major generators of intracellular contractile forces, transmitted through the FA plaque and the integrins to the
substrate. Namely, there is an intimate linkage between the formation of the FAs around the cell periphery
and the development of stress fibers within the cell. To characterize and predict the bio-chemo-mechanical
interactions between a cell and the ECM, a model must be devised that incorporates the influence of the forces
exerted by the stress fibers on the formation of FA. Developing such a model is the primary intent of this
article. The FA component of the model will be intimately linked with a cell contractility scheme developed by
Deshpande et al. (2006, 2007) that characterizes the organization of the stress fibers and the tractions they
exert on the substrate.

A growing body of experimental evidence suggests that FA formation is itself controlled mechanically, with
the tractions generated at the contact sites increasing the rate of assembly of the FAs (Balaban et al., 2001;
Tan et al., 2003; Petroll et al., 2003). Recent results (Parker et al., 2002; Brock et al., 2003; Chen et al., 2003)
also demonstrate that the global shape of cells and their internal cytoskeletal structure play an important role
in constraining the magnitude, distribution, and direction of such tractions across the cell surface, and thereby
control local FA assembly and organization. In particular, stationary cells tend to organize long stress fibers,
with large FAs concentrating at the cell periphery (Fig. 1a) and in high curvature regions. Moreover, FA
formation also can be increased or decreased by, respectively, raising or lowering the cytoskeletal tension,
using pharmacological agents that curtail acto-myosin activity (Fig. 1b). A number of important questions
arise from these observations. Does an adhesion/stress fiber interaction leads to this self-organizing behavior,
with the FAs concentrating at the cell periphery? What determines the time-scale of FA redistribution?
Following the pioneering studies of Bell (1978) and Bell et al. (1984), Dembo et al. (1988) described adhesion
Fig. 1. (a) Fluorescent confocal micrographs of individual, vinculin-labeled Bovine capillary endothelial cells cultured on square islands of

different sizes (lengths of sides are indicated). (b) Immunofluorescence images of vinculin in Bovine capillary endothelial cell (i–iv) and

Human vascular endothelial cells (v–viii) cells on 5mm islands that were untreated (i, v) or exposed to thrombin (ii, vi), BDM (iii, vii), or

KT5926 (iv, viii). Scale bars indicate a 10 mm length. Reproduced from Chen et al. (2003).
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by a chemical rate reaction theory, whereas Evans (1985) employed a traditional cohesive zone approach.
Freund and Lin (2004) investigated the role of binder mobility in the development of adhesive contacts.

Because FAs contain components that interact with a large number of signaling cascades (Burridge and
Chrzanowska-Wodnicka, 1996), shape-regulated FA formation could provide a molecular mechanism for
how cell structure and physical distortion of cell shape can be transduced into biochemical signals inside the
cell. Thus, this inside—out regulation of FA assembly may be critical in integrating many physical cues—cell
shape, ECM compliance, intracellular tension, and cytoskeletal architecture—into signals that partially
determine cell function. The fact that many proteins perform both structural and signaling functions hinders
the ability of traditional genetic approaches to parse the mechanisms that regulate FA dynamics, since
knocking out a protein by genetic manipulation may also eliminate an essential structural component.
Consequently, to understand how specific molecular features give rise to the observed behavior it is essential to
combine experimental studies of adherent cells—including the use of microscopy to observe the structure and
dynamics of the cytokskeleton and FAs—with computational models that include the salient mechanics.

A generalized model must be capable of characterizing the assembly of the FAs in terms of the basic
interactions between the forces, the assembly and dissolution of stress fibers and the compliance of the
substrate. Moreover, once calibrated, it must explain such effects as the preference for FA formation at the cell
periphery, the strong influence of substrate compliance on the forces exerted on the substrate, the influence of
cell size on FA formation and on the magnitude of the forces, as well the influence of cell shape and boundary
conditions on the orientations of the fibers. Although the nature of mechanical sensing by FA is not fully
understood, several possible mechanisms have been proposed (Bershadsky et al., 2003; Zhu et al., 2000) and a
number of phenomenological models have been developed that account for the growth of FAs with increasing
traction forces at the adhesion sites (Novak et al., 2004, Nicolas et al., 2004; Nicolas and Safran, 2006). All of
these models assume a-priori that traction forces developed at the contact sites increase the rate of assembly of
focal adhesions and have the limitation that they do not present a consistent thermodynamic framework.
Furthermore, these models either just take into account elastic stresses developed in the cell (Nicolas et al.,
2004; Nicolas and Safran 2006) or assume an ad hoc relation for the forces generated by acto/myosin stress
fibers (Novak et al., 2004; Shemesh et al., 2005). Here we pursue a mechano-sensitive model of the processes
that form FAs. The model incorporates contributions to the free energies of the integrins from the stored
energy caused by stretching of the integrin–ligand complexes and the potential energy due to the mechanical
work done by the cytoskeleton—it is the combination of these two contributions that governs the stability of
the receptor–ligand complex. This model is then coupled with a biochemically motivated stress fiber model
(Deshpande et al., 2006, 2007) that accurately predicts a large number of observations including: (i) the scaling
of forces generated by cells on a bed of microneedles (Deshpande et al., 2007); (ii) the sensitivity of the
contractile response to the stiffness of the substrate (Deshpande et al., 2006), and (iii) the evolution of stress
fiber orientations in cells subjected to cyclic stretch (Wei et al., 2007). It will be shown that the new, integrated
model is capable of rationalizing many experimental observations of FA formation.

The article is organized in the following manner. First, the basic observations of FA formation are
summarized as a motivation for the modeling approach. This is followed by a description of the model in
terms of the chemical potentials and the fluxes. Thereafter, the application of the model in one dimension is
presented in three parts. In the first, the parameters to be used in the model are summarized. Then two single
cell phenomena are analyzed. One examines a cell on an ‘‘infinite’’ substrate. The other addresses a cell on a
patterned substrate. In both cases, the predictions of FA formation are compared with experimental
observations. Finally, an example of the implementation of the model in two dimensions is presented for a cell
on a stiff substrate with a V-shaped micro-patterned ligand patch. Additional two-dimensional examples are
presented in a companion article (Pathak et al., 2007).

2. Brief review of the biochemistry of the binding proteins (integrins)

Integrin proteins enable a bidirectional control of cell adhesion, by dynamically coupling the immobilized
matrix and its associated ligands outside the cell with its internal ‘‘skeleton’’. Recent studies (Xiao et al., 2004)
have elucidated that integrins exist in two conformational states: (i) a low affinity (or bent) state and (ii) an
active or ‘‘straight’’ state with a high affinity to the appropriate ligand (see Fig. 2); see Carman and Springer
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Fig. 2. The two conformational states of integrins. (a) The low affinity (inactive or bent) conformation and (b) the high affinity (active or

straight conformation). Reproduced from Lodish et al. (2004).
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(2003) for a detailed review. The high affinity integrins interact with the ligand molecules on the ECM and
form complexes or bonds. The complexes have equilibrium dissociation constants in the low to high micro-
molar range and thus are weak compared to metallic or covalent bonds (Hynes, 1992). In conjunction with the
time dependence of the bonding process, this magnitude of interaction is important in achieving the
reversibility that is essential for sustaining the life of an organism. It must be possible to make or break
chemical bonds by means of catalytic agents, small temperature changes and small mechanical forces. The
‘‘bent’’ geometry of the low affinity integrins implies that they do not interact with ligand molecules on the
ECM.

Three sets of observations imply that the clustering of the integrins is driven by the contractile apparatus
within the cell (Burridge and Chrzanowska-Wodnicka, 1996), and not from interactions with the ECM on the

outside. The clustering is weak or non-existent if (i) the protein that signals the formation of the contractile
stress fibers (Rho) is inactive (Hotchin and Hall, 1995), (ii) 2,3-butanedione monoxime (BDM) is added to the
cell to restrict the actin–myosin activity (Chen et al., 2003) (Fig. 1b), and (iii) the concentration of FA proteins
(such as vinculin) is maximum around the periphery of stationary cells (Fig. 1a) where the tractions exerted by
the stress fibers on the ECM are at their maximum (Parker et al., 2002; Brock et al., 2003; Chen et al., 2003).
The implication is that the binders migrate toward the regions of high traction by a diffusive process.
However, no biochemical–mechanical basis for the mechano-sensitivity of the binders has been proposed. The
ensuing article presents such a basis and derives a model capable of reproducing the foregoing observations as
well as others in the literature.
3. A new biochemo-mechanical model for FA formation and growth

The ensuing model will characterize adhesion of a cell membrane containing binders or receptors (e.g. integrins)
to a substrate with compatible ligands (e.g. the Arg–Gly–Asp ligand found in fibronectin). The substrate may be
rigid or flexible and thus may be regarded either as a tissue or artificial substrate. The low affinity integrins are
mobile within the plasma membrane. The high affinity integrins are connected to intracellular FA proteins (such
as talin and vinculin) that link it to the cytoskeletal fibers. They are relatively stationary within the cell wall and
modeled as immobile (it will be seen subsequently that the concentrations of the unbound high affinity integrins
are sufficiently low that it is reasonable to neglect the diffusion of these types of binders).

Chemical Potentials. When in local equilibrium at a dilute concentration xL,
1 the low affinity integrins have

chemical potential:

wL ¼ mL þ kT ln ðxL=xRÞ, (1)
1In certain situations, such as in the presence of nano-scale clustered adhesion ligands, there may be an increase in the effective

receptor–ligand affinity upon clustering. (Irvine et al., 2002). The dilute concentration assumptions implicit in Eqs. (1) and (2) are no

longer valid in such situations and thus outside the scope of the present framework.



ARTICLE IN PRESS
V.S. Deshpande et al. / J. Mech. Phys. Solids 56 (2008) 1484–15101488
where mL is their reference chemical potential at the reference binder concentration xR, k is the Boltzmann
constant, and T the absolute temperature. The first term in Eq. (1) represents the contribution from the
internal energy (enthalpy) and the second is the entropy of mixing (Gaskell, 1973). The ‘‘straight’’
configuration of high affinity integrins causes them to be less stable than the ‘‘bent’’ or low affinity state
(Cluzel et al., 2005), implying that they have a higher reference potential mH4mL. Moreover, for geometrical
reasons, only this straight form interacts with the ligand molecules on the ECM. Consequently, the chemical
potential wH includes additional contributions from the stretching of the bonds:

wH ¼ mH þ kT ln ðxH=xRÞ þ FðDiÞ � F iDi. (2)

Here F(Di) is the stretch energy stored in the integrin-ligand complex, while the work-conjugate force, Fi, is
related to the stretch Di by

Fi ¼
qF
qDi

. (3)

The �FiDi term in Eq. (2) is the mechanical work term that represents the loss in free energy due to the
stretch Di of the integrin–ligand by the force Fi. (It is analogous to the pressure–volume term in the
thermodynamics of gases.) In molecular terms, the stretch of the ligand–integrin bond stabilizes the adhesion
complex by lowering the free energy wH. The formulae (1) through (3) are used widely to characterize the
thermodynamic states of solids (Gaskell, 1973). The work term in Eq. (3) had been identified previously
(Shemesh et al., 2005) as an important constituent of the thermodynamic state of the FAs. However, the terms
due to the stored energy and the configurational entropy have been neglected in these prior assessments. Yet,
they are critical constituents of a general thermodynamic framework that explicitly accounts for the
cytoskeletal response, including remodeling as a result of contractility, spreading etc.

The kinetics governing the rate of conversion of the low affinity integrins to their high affinity state (and vice
versa) are fast compared to all other time-scales involved, implying that the concentrations of the two forms of
the integrins are governed by thermodynamic equilibrium. Namely, at each location xi on the plasma
membrane:

wH ¼ wL. (4)

Thus, in the absence of any interactions between the integrins and the ligand (an isolated cell with
Fi ¼ 0; Di !1), the ratio of the steady-state concentrations of the low and high affinity integrins on the
plasma membrane is

xL
xH
¼ exp

mH � mL
kT

þ
g

kT

h i
. (5)

Here g � FðDi !1Þ is the surface energy of the high affinity integrins when sufficiently separated from the
ligand that the interaction force is negligible. Ions (such as Mn2+) reduce the surface energy g and/or the
difference in the reference chemical potential mH�mL between the two integrin states causing the fraction
present in the high affinity form to increase (Cluzel et al., 2005).

Most previous assessments (Bell, 1978; Bell et al., 1984; Dembo et al., 1988) considered only two states
of the integrin molecules: bound or unbound. The chemical potentials described above clarify that, while the
low affinity state is always unbound, with wL dependent only on the concentration, the state of the high
affinity integrins depends upon the stretch of the integrin-ligand complex. This is illustrated in Fig. 3 where
the chemical potentialwH is plotted as a function of the magnitude of the stretch D�|Di| of the integrin–
ligand complex. Consider the variation of wH with D for a given xH. At D ¼ 0, the integrin is bound to the
ligand but the complex is unstretched and thus has a chemical potential wB

H ¼ mH þ kT ln ðxH=xRÞ.
With increasing stretch D, the force in the complex increases, thereby decreasing wH and stabilizing the
complex. This continues until the force in the complex reaches a maximum value Fmax at the stretch D ¼ Dpeak.
With continued stretching, the force decreases and wH begins to rise: wH asymptotes to the value wU

H ¼ wB
H þ g

when the force in the complex is zero and the integrin and ligand are widely separated. This corresponds
to the unbound state of the high affinity integrin. As illustrated in Fig. 3 the chemical potential of the high
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Fig. 3. An illustration of the effect of the stretch magnitude D�|Di| on the chemical potential wH of the high affinity integrins. Curves are

shown for three increasing values of the integrin concentration xH and show that wH is a minimum when the interaction force between the

integrin and the ligand is a maximum at a stretch D ¼ Dpeak.
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affinity integrins also increases with increasing xH due to the rise in the configurational entropy of the
integrins.

Integrin Fluxes. The kinetics governing the rate of conversion of the low affinity integrins to their high
affinity state (and vice versa) are assumed fast compared to all other time-scales involved (namely relative to
the formation and dissociation of the stress fibers and the diffusion of the integrins along the cell wall).
Thus the ratio of the low to high affinity integrin concentrations at any point on the plasma mem-
brane is determined by Eq. (4) while the low affinity integrin fluxes along the plasma membrane are
governed by a diffusive process. The spatial gradient in the chemical potential of the low affinity integrins
imposes a driving force that biases their diffusional drift. In particular, the mean binder speed va along
the cell membrane is proportional to the negative gradient in the chemical potential according to (Mullins,
1957)

va ¼ �m
qwL
qxa

, (6)

where m is a mobility parameter and the Greek subscripts (having the range 1,2) refer to a local set of
Cartesian co-ordinates in the deformed cell membrane. The net flux ja of these integrins across a section of the
cell wall (positive in the direction of increasing xa) is then

ja ¼ xLva ¼ �mxL
qwL
qxa

. (7)

It remains to specify a conservation law relating the flux ja to the local integrin concentration. Consider
an elemental area of the cell wall, dA ¼ dx1dx2, with a density of integrins per unit area, x ¼ xL þ xH
(Fig. 4). The fluxes in and out of the area are shown in Fig. 4. Conservation of the number of binders
dictates that

q
qt
ðx dx1 dx2Þ ¼ j1ð�dx1=2; 0Þ � j1ðdx1=2; 0Þ

� �
dx2

þ j2ð0;�dx2=2Þ � j2ð0;dx2=2Þ
� �

dx1, ð8Þ

which simplifies in the infinitesimal limit to

qx
qt
¼ �

qja
qxa
� x

d _A

dA
, (9)
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Fig. 4. The fluxes of integrins across an elemental area dA on the cell surface.
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where the superposed dot indicates material differentiation with respect to time. The current area dA

(with outward normal ni) can be related to the corresponding un-deformed area dA0 (with outward
normal Ni) through the deformation gradient, Fij ¼ dij þ qui=qX j, where dij is the Kronecker delta and
qui=qX j are the spatial gradients of the cell displacements ui with respect to the undeformed configu-
ration. Here Non-Greek subscripts are employed to emphasize that the spatial gradients are defined
with respect to a fixed three-dimensional Cartesian co-ordinate system. Nanson’s formula states that
(Malvern, 1969)

ni dA ¼ JNjF
�1
ji dA0, (10)

where J ¼ det(Fij). Differentiating (10) with respect to time gives

d _A

dA
¼

q _ui

qxi

nk �
q _ul

qxk

nl � _nk

� �
nk, (11)

and thus the conservation law (9) reduces to

qx
qt
¼ �

qja
qxa
� xnk

q _ui

qxi

nk �
q _ul

qxk

nl � _nk

� �
. (12)

Eqs. (7) and (12) are the governing equations for the trafficking of the integrins along the cell wall, with the
ratio xL=xH specified by Eq. (4).

Coupling with cytoskeletal response. The tractions Ti on the cell membrane (defined as the force per unit area
on the cell surface) are dictated by the forces Fi on the integrin–ligand complexes, in combination with the
concentrations of the high affinity integrins, in accordance with

Ti ¼ �xHFi, (13a)

where the minus sign arises because Fi are the forces that the cell exerts on the integrin–ligand complex.
Since these tractions are balanced by the stresses within the cell, the coupling of cell contractility with adhesion
involves the mechanical equilibrium equation

Sij;j ¼ 0, (13b)

with traction boundary conditions Ti ¼ Sijnj ¼ �xHFi over the cell membrane. Here Sij are the Cauchy
stresses within the cell specified by a model for the cell that accounts for cytoskeletal contractility (Deshpande
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Fig. 5. Schematic representation of cell on a ligand coated substrate. The network of stress fibers and the integrin–ligand complex part of

the focal adhesion are shown as insets.
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et al., 2006, 2007). An example of this coupling is illustrated in Fig. 5 for a ‘‘two-dimensional’’ cell, thickness b

in the x1�x2 plane, lying on a flat substrate having normal in the x3-direction. One-dimensional solutions to
such problems are detailed in Section 5.

The bond energies and interaction forces. We restrict attention to ‘‘sliding’’ interactions between a flat

substrate (in the x1�x2 plane) and the cell and consider a simplified model for the interactions of the high
affinity integrins with the ligand molecules.2 The main restriction in choosing the functional F(Di) is that the
integrin-ligand complexes have a finite rupture energy, such that

g � FðDi !1Þ. (14)

Henceforth the subscript i on the bond stretch components Di takes only the values 1 and 2 as the bond
stretches are defined in the plane of the flat substrate. Rather than employing a complex interaction (such as
the Lennard-Jones (1931) potential), we utilize the simplest functional form for F(Di) that satisfies Eq. (14).
We recognize that this simple form does not capture many of the details that accompany the energy landscape
for dissociation, but does, as shown below, capture the essential physics of FA formation. Hence a simple
piecewise quadratic potential is chosen (Fig. 6a):

F ¼

ð1
2
ÞlsD

2
e ; DepDn;

�lsD
2
n þ 2lsDnDe � ð

1
2
ÞlsD

2
e ; DnoDep2Dn;

lsD
2
n; De42Dn;

8>><
>>: (15a)

so that the surface energy, g � lsD
2
n, with the effective stretch De �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
1 þ D2

2

q
and ls is the stiffness of the

bond. The maximum force, lsDn, occurs at a stretch De ¼ Dn.
2The treatment presented here can be readily extended to more general interactions between the cell and an arbitrary-shaped substrate/

ECM by choosing an appropriate bond energy functional F.
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Fig. 6. Sketches of the (a) bond energy F as a function of the effective bond stretch De and (b) the corresponding bond force versus

displacement relation with D2 ¼ 0.
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The corresponding forces for interactions between a single isolated binder (integrin) and ligand molecule pair

are piecewise linear functions of Di (Fig. 6b) and follow from Eq. (3) as

Fi ¼

lsDe
Di

De
; DepDn

2lsDn
Di

De
� lsDe

Di

De
; DnoDep2Dn;

0; De42Dn:

8>>>>><
>>>>>:

(15b)

In contrast, an integrin sliding over an ECM with a high density of ligand molecules (i.e. the spacing between
the ligand molecules is much less than Dn) has a different force/displacement relation (Fig. 7a). The applied
force thus starts at zero and increases with increasing displacement of the integrin to the right due to the
interaction of the integrin with the first ligand molecule. The force reaches a peak at lsDn and subsequently
sliding of the cell membrane with respect to the substrate occurs at almost constant force. The physics of the
integrin interactions with the ligand molecules leading to this response are discussed in Appendix A.

Since the high affinity integrins are fixed with respect to the cell membrane and the ligands are fixed to the
ECM, we propose that, for integrins in contact with the ECM and located at xi, the rate of evolution of the
stretch of the integrin–ligand complex is related to the displacements of the cell by

_Di ¼
_ui � _uS

i ; DepDn or
qF
qDe

_Deo0

� �
;

0; otherwise;

8><
>: (16a)

where _uS
i is the displacement rate of a point on the ECM located at xi � Di. The second of the results in

Eq. (16) formalizes the processes described in Appendix A. It follows that there is energy dissipation along the
interface between the cell membrane and the ECM, resulting from the irreversible switching process
(Appendix A). This is apparent in Fig. 7a where the hysteresis resulting from cyclic motion of the integrin is
characterized by the dashed line in the force–displacement plot.

The irreversible integrin–ligand interaction mechanisms that occur for integrins on the ECM cannot occur
for integrins outside the ECM periphery. Thus, as the integrin moves to the right away from the ECM,
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Fig. 7. Sketches of the force versus displacement relation for (a) a single integrin sliding over an ECM with a dense array of receptors and

(b) integrin as it leaves the ECM periphery. For purposes of illustration we have taken u2 ¼ 0 and shown the force–displacement

relationships assuming that D1 ¼ 0 at u1 ¼ 0 in both (a) and (b).
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eventually the integrin-ligand complex will rupture (Fig. 7b), and at this stage the surface energy will be
created as the integrin moves further away from the rightmost ligand, and the force relaxes to zero. We assume
that, for such integrins, the rate of change of the stretch is equal to the relative displacement rate between the
integrin and the corresponding ligand on the ECM, i.e.

_Di ¼ _ui � _uS
i . (16b)

This condition invokes the force–displacement relation depicted in Fig. 7b as the integrin moves beyond the
edge of the ECM. Note that for a rigid ECM the substrate displacements are zero and thus _uS

i ¼ 0.

4. Parameters for a one-dimensional model

We illustrate the features of the model by considering a one-dimensional cell, thickness b ¼ 1 mm (Fig. 8), on
a rigid ECM. The active contractile response is modeled using the one-dimensional version of the cytoskeleton
constitutive law proposed by Deshpande et al. (2007), summarized in Appendix B. The contractile properties
of the cell are fixed at those employed in Deshpande et al. (2006, 2007): namely, the decay constant of the
activation signal for the stress fiber formation is, y ¼ 720 s, while the passive Young’s modulus is
E ¼ 0.08 kPa. The non-dimensional reaction rate constants are k̄f ¼ 10 and k̄b ¼ 1:0 while the non-
dimensional fiber rate-sensitivity is, k̄v ¼ 10. The maximum tension exerted by the stress fibers is,
smax ¼ 4.0 kPa, and the reference strain rate in the cross-bridge dynamics law, _�0 ¼ 2:8� 10�4 s�1. Thus,
the non-dimensional cytoskeletal properties are: Ē � E=smax ¼ 0:02; k̄f ¼ 10; k̄b ¼ 1, k̄v ¼ 10; _̄�0 � _�0;
y ¼ 0:2.

All results are presented at a temperature T ¼ 310K. The reference adhesion properties are specified in a
manner that assures their consistency with accepted ranges of binder parameter values. The uniform density of
integrins (high and low affinity taken together) in an isolated cell is denoted by x0 and taken to be
5000 integrins mm�2 while the mobility of the low affinity binder is, m ¼ 10 mm2s�1 (Lauffenburger and
Linderman, 1996). The difference in the reference chemical potentials of the high and low affinity integrins is
taken to be mH�mL ¼ 5 kT such that the ratio xL=xH � 150 for a cell with contractility curtailed (Fi ¼ F ¼ 0);
consistent with observations (McCleverty and Liddington, 2003). Experimental measurements suggest that the
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Fig. 8. The two one-dimensional cell adhesion problems analyzed. A cell of length 2L and thickness b on (a) an infinite ECM and (b) a

patterned ECM with a ligand patch of length 2Ls .
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strength of the integrin-ligand complex varies in the range, 2-10 pN (Rinko et al., 2004; Merkel et al.,
1999), while the surface energy per integrin is in the range 5-35 kT (Leckband and Israelachvili, 2001).
We choose a reference stiffness, ls ¼ 0.15 nN mm�1, and stretch at the maximum force Dn ¼ 13 nm, such
that the resultant maximum strength lsDn and surface energy g are consistent with the lower ends of the
ranges quoted above. The reference adhesive properties in non-dimensional terms are then given as (i) surface

energy ḡ � lsD
2
n=kT ¼ 6:2, (ii) strength of integrin-ligand complex t̄max � lsDnx0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkT y
p

=ðsmaxbÞ ¼ 0:45,
and (iii) the difference in the reference potentials of the high and low affinity integrins, Dm̄ ¼ ðmH � mLÞ=
kT ¼ 5.

In the following sections we consider two examples to illustrate some essential features that emerge
upon coupling the new adhesion model with the existing cell contractility model (Deshpande et al., 2006,
2007).

5. A single cell on an ‘‘infinite’’ rigid substrate

5.1. Formulation

A one-dimensional cell, length 2L (along the x-direction), is bound to a long rigid ECM (Fig. 8a). With x

the co-ordinate of a material point in the cell in the current configuration and X the corresponding co-ordinate
in the undeformed configuration, the response of the cell is completely described by the following set of
differential equations:

The one-dimensional mechanical equilibrium equation is

b
qS
qx
¼ xHF , (17a)

where F is the force exerted by the cell on the integrin–ligand complex, and S the stress in the cell, as
specified by constitutive Eqs. (B.1)–(B.4) through the stress fiber concentration Z.

The strain-rate _� in the cell is related to the displacement rates _u of cell material points through the
compatibility equation

_� �
q _u
qx

(17b)
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As the integrins are always in contact with the rigid ECM, the stretch rate is given by the one-dimensional
version of Eq. (16):

_D ¼
_u; jDjpDn or

qF
qjDj

_Do0

� �
;

0; otherwise:

8><
>: (18a)

Since the effective stretch is De � jDj, the integrin-ligand interaction force is given as

F ¼

lsD; jDjpDn;

2lsDnsignðDÞ � lsD DnojDjp2Dn;

0; jDj42Dn:

8><
>: (18b)

The potential F is obtained by replacing De with |D| in Eq. (15a).
The problem description is completed by specifying the one-dimensional trafficking equations for the

concentration xH of the high affinity integrins. From Eqs. (4), (7) and (12):

qx
qt
¼ m

q
qx

xL
qwL
qx

� �
� x_�, (19a)

where x ¼ xL þ xH, and

wL ¼ mL þ kT ln
xL
xR
¼ mH þ kT ln

xH
xR
þ FðDÞ � FD. (19b)

For simplicity we assume that the cells are stress and stress fiber free at time t ¼ 0: thus, u ¼ Z ¼ � ¼ S ¼ 0
with a single activation signal C imposed at t ¼ 0. Moreover, since the cells are initially stress free, the high
affinity integrin-ligand complexes are un-stretched such that D ¼ 0 everywhere on the cell surface. Then
Eq. (19b) gives the uniform concentration of high and low affinity integrins over the cell surface at time
t ¼ 0 as

xH ¼
x0

1þ xL=xH
, (20a)

and

xL ¼
x0

1þ xH=xL
, (20b)

respectively, where

xH
xL
¼ exp �

mH � mL
kT

h i
. (21)

The stress and flux boundary conditions for Eqs. (17) and (19), respectively are

S ¼ 0 and j ¼ �mxL
qwL
qx
¼ 0 at X ¼ �L. (22)

Recall that the cell is symmetric about X ¼ 0, so we only analyze the response over the domain 0pXpL

with symmetry boundary conditions (u ¼ 0; j ¼ 0) imposed at X ¼ 0.
The finite element solution technique for these one-dimensional partial differential equations is detailed in

Appendix C. All calculations use a mesh comprising 600 two-node elements with linear interpolation
functions. The mesh is refined near the edge, X ¼ L, in order to accurately capture large parameter gradients
there.

5.2. The formation and growth of FAs

The resulting distributions of the high and low affinity integrins as a function of the normalized position
x̄ � x=L are plotted in Figs. 9a and b, respectively, for a cell of length L ¼ 5 mm (normalized length
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Fig. 9. Spatial distributions of the (a) high and (b) low affinity integrin concentrations and (c) normalized tractions exerted by the cell on

the ECM at selected times after the application of the activation signal at t ¼ 0 for the problem sketched in Fig. 8a. The cell length was

taken as L ¼ 5mm ðL̄ ¼ 28Þ and reference properties were employed.
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L̄ � L=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkT y
p

¼ 28) at selected times, t̄ � t=y. At time t̄ ¼ 0, concentrations xL/x0 and xH/x0 are spatially
uniform with xL/xHE150, as specified by Eq. (21). The activation signal applied at t̄ ¼ 0 initiates contractility
in the cell resulting in the ensuing sequence of events.

Step I: Mechanical equilibrium dictates that high tractions T ¼ xHF are developed near the cell edge, at
x̄ � 1 (Fig. 9c shows the traction between the cell and the ECM as a function of position x̄ � x=L at various
times t̄ � t=y).
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Fig. 10. The effect of cell size L̄ on the steady-state (a) distributions xssH of the high affinity integrins and (b) the distributions of the stress

fiber concentrations Z. The results are for the problem sketched in Fig. 8a with reference adhesion properties.
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Step II. These high tractions reduce the chemical potentials of the high affinity integrins (Eq. (2)).
Step III. In order to maintain thermodynamic equilibrium, low affinity binders transform to their high

affinity states at sites of high traction.
Step IV. This transformation reduces the concentration, xL, of mobile, low affinity integrins, which initiates

the diffusive flux of those binders toward the sites of high traction.
With increasing tractions, the concentrations of the high affinity binders increases and thus the stiffness per

unit area, xHls, of the FAs increases. This increase further promotes the applied forces by inhibiting the
dissociation of the stress fibers in the cytoskeletal contractility model (Deshpande et al., 2006), thereby further
increasing the tractions applied by the cell on the ECM. This co-operativity between contractility and FA

formation is inherent in the model.

FAs are identified by staining for proteins, such as vinculin. By equating xH with the vinculin concen-
tration, the model accurately predicts the experimental observation that the FAs concentrate around
the cell periphery (Chen et al., 2003). Moreover, without contractility, the low focal adhesion concen-
trations predicted by the model (see time t̄ ¼ 0 in Fig. 9a) are consistent with the observed reduction in
vinculin concentration when contractility is curtailed by adding BDM into the culture (Chen et al., 2003)
(see Fig. 1b).
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Fig. 11. The normalized total focal adhesion intensity c̄H at steady-state. The results are for the problem sketched in Fig. 8a with reference

adhesion properties. Measurements of the total focal adhesion intensity from Chen et al. (2003) are included as an inset.
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The predicted effect of cell size L̄ on the distributions of the high affinity integrin concentrations xssH at
steady-state (Fig. 10a) is broadly consistent with the experimental observations (see Fig. 1a). Namely, the
fraction of the cell area covered by a high concentration of FAs increases with decreasing cell size. The
simplistic rationalization is that mechanical equilibrium would require a high concentration of FAs in a region
near the cell edge of length

‘ �
smaxb

x0lsDn

. (23)

This length is independent of the cell size L and thus ‘=L increases with decreasing L. However, this rationale
neglects the co-operativity between cell contractility and FA formation. These effects are highlighted in
Fig. 10b where the steady-state spatial distributions of the stress fiber concentrations Zss are plotted for the
cases considered in Fig. 10a. The fraction of the cell covered by a high concentration of stress fibers increases
with increasing L. Moreover, for the smallest cell (L̄ ¼ 5:7) full polymerization (Zss ¼ 1) of the stress fibers is
not achieved even at the center of the cell, because the ‘‘effective’’ substrate stiffness felt at the cell center
decreases with decreasing L.

The total normalized FA intensity at steady-state is defined as

c̄H �
cH

x0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkTy
p , (24a)

where

cH ¼

Z L

0

xssH dX . (24b)

The variation of c̄H with normalized cell size L̄ is included in Fig. 11. Evidently, the model predicts that the
total FA intensity increases with increasing cell size. This prediction is consistent with observations (Chen
et al., 2003) for Bovine capillary endothelial cells (inset in Fig. 11) that the total vinculin and phosphotyrosine
quantities increase as the side length of a square cell on a patterned substrate increases.

The effect of bond strength t̄max on the steady-state distributions of xssH is illustrated in Fig. 12a for a cell of
length L̄ ¼ 28 and three selected values of t̄max (with other properties held fixed at their reference values). Note
that changing t̄max while keeping ḡ fixed requires that the values of ls and Dn be changed simultaneously. The
main effect of reducing t̄max is to increase the fraction of the cell covered by a high concentration of focal
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Fig. 12. The effect of (a) normalized bond strength t̄max and (b) surface energy ḡ on the steady-state distributions of xssH of the high affinity

integrins for the problem sketched in Fig. 8a with L̄ ¼ 28: Unless otherwise specified, the normalized properties are kept fixed at their

reference values.
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adhesions [as predicted by the scaling argument in Eq. (23)]. But t̄max has negligible effect on the maximum
value of xssH because the thermodynamic equilibrium between the low and high affinity binders is primarily
governed by the rupture energy g of the integrin complex (kept constant in Fig. 12a). The effect of surface

energy ḡ on the steady-state distributions of xssH is shown in Fig. 12b for three selected values of ḡ. Decreasing ḡ
not only increases the fraction of the cell covered by a high concentration of focal adhesions, but also reduces
the maximum values of xssH for the reasons discussed above.

Cell adhesion is typically thought to be either governed by the diffusion of the integrins or by the
receptor–ligand kinetics (Boulbitch et al., 2001). In order to illustrate the effect of low affinity integrin mobility

we re-arrange the non-dimensional groups so that the binder mobility only appears in the non-dimensional cell
length, L̄ � L=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkTy
p

, and thus re-define the non-dimensional integrin-ligand complex strength as,
x0lsDnL=ðsmaxbÞ. The steady-state distributions of xssH are included in Fig. 13 for two values of L̄ and two
of x0lsDnL=ðsmaxbÞ with all other non-dimensional groups held fixed at their reference values. Increasing the
binder mobility by about a factor of 15 (by decreasing L̄ from 28 to 2) only slightly increases the FA
concentrations, as parameterized by xssH for a fixed strength x0lsDnL=ðsmaxbÞ. This insensitivity arises because
the kinetics of the stress fiber formation and dissociation are much faster than the diffusive processes. Namely,
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Fig. 13. The effect of low affinity integrin mobility on the steady-state distributions xssH of the high affinity integrins for the problem

sketched in Fig. 8a. Results are shown for two choices of the normalized bond strengths x0lsDnL=ðsmaxbÞ with other normalized properties

fixed at their reference values. The integrin mobility is parameterized using the normalized cell length such that a smaller L̄ indicates a

higher binder mobility.
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the flux of the low affinity integrins is not fast enough to affect the stress fiber structure in the cell and adhesion
is primarily governed by the cytoskeletal kinetics within the present framework.

6. A single cell on a patterned substrate

A cell on a patterned rigid substrate (Fig. 8b) mimics typical experimental situations wherein only a fraction
of the cell is in contact with the ligand patch. The cell is symmetrically located such that the undeformed cell
spans the domain �LpXpL, while the ligand patch is located over �LspXpLs where LsoL. The governing
equations require one addition. Now the integrins in the domain |X|4Ls cannot continue to associate with the
ligand molecules as they move further away from the ligand patch. For |X|pLs, the evolution of the stretch D
is given by Eq. (18a) and for |X|4Ls by the one-dimensional version of Eq. (16b), _D ¼ _u. All results use the
reference set of properties with Ls ¼ 5 mm and L ¼ 7 mm. The boundary conditions employed are S ¼ 0 and
j ¼ 0 at X ¼ L and symmetry boundary conditions (j ¼ u ¼ 0) at X ¼ 0. The FE mesh comprised 800 and 320
two-noded elements over the domains 0pXpLs and LsoXpL, respectively. The mesh was highly refined
near the edges of the ligand patch. Unlike the situation in Fig. 8a, we cannot prescribe an initially stress-free
configuration with a uniform distribution of integrins. Recall that binders located at xXLs+2Dn cannot be
bound to receptors on the ECM and thus have energy F ¼ g and bond force F ¼ 0. By contrast, binders
located well within the ligand patch have un-stretched bonds with D ¼ F ¼ F ¼ 0. Thus, the ratio of the
concentrations of the high and low affinity integrins is higher over the region 0pxpLs than over LsoxpL,
with a transition zone developing around xELs. A procedure to set-up an initial equilibrium distribution of
integrins in the passive cell (one that can sustain only elastic stresses and generate no stress fibers, Z ¼ 0, and
hence no active stresses) is detailed in Appendix D.

An initial equilibrium distribution of the high affinity integrins is plotted in Fig. 14a. The transition zone
occurs over a length approximately equal to Dn (Fig. 14b). The corresponding distributions of the bond
lengths D of the high affinity integrins are plotted in Fig. 15a. Moving from the edge of the ligand patch
towards the center of the cell, |D| decreases with D ¼ 0 for x/Lo0.67. By contrast, the bond length increases
monotonically outside the ligand patch (over the region LspxpL): the sharp peak in concentration occurs at
a bond stretch |D|Dn when the term F–FD is at its minimum value ð�0:5lsD

2
nÞ. As seen from Figs. 14 and 15a,

this occurs at xELs+Dn. The stretched integrin-ligand complexes exert tractions on the passive cell that are
balanced by elastic straining: the spatial distributions of these strains are plotted in Fig. 15b. The cell is under
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Fig. 14. (a) Initial (Z ¼ 0 and t̄ ¼ 0) equilibrium distribution of the high affinity integrins xH for a cell of length L ¼ 7mm on a ligand patch

of length Ls ¼ 5 mm, and (b) magnified views of the distributions of xH around the edge of the ligand patch. In (b) three additional initial

distributions of xH are used to illustrate the non-uniqueness of these initial distributions.
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maximum compression near the edge of the ligand patch with the strains reducing to zero gradually for xoLs.
They are again zero for x4Ls+2Dn when the tractions due to the integrin-ligand complex stretches are zero.
As noted in Appendix D, this initial distribution of the integrins is not unique. Numerical investigations using
the prescription in Appendix D have shown that differences, albeit rather small, in the distributions only occur
in the transition zone around xELs. Subsequently, all results are shown for the initial integrin distribution
plotted in Fig. 14a.

The resulting spatial distributions for the high affinity integrins at selected times after the application of the
activation signal applied at time t ¼ 0 is illustrated in Fig. 16a. Consistent with experimental observations
(Fig. 1b) very low densities of FA are predicted at t ¼ 0 when contractility due to stress fiber activation has not
initiated. The initiation of contractility increases the FA density significantly with a steady-state established
for t̄414. The transition region near the edge of the ligand patch around X ¼ Ls (present in the initial
distribution of the high affinity integrins Fig. 14a) persists even after the initiation of contractility: see the
steady-state spatial distributions xssHðt̄ ¼ 14Þ around the edge of the ligand patch included in Fig. 16b.
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Fig. 15. The initial (Z ¼ 0 and t̄ ¼ 0) spatial distributions of the (a) bond length and (b) strains for the integrin distributions of Fig. 14a.
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7. Future perspectives

Early studies of cell adhesion on flat substrates described several distinct processes, including the initial
clustering of integrins when they bind to ECM ligands, associated formation of FAs, and progressive
maturation of these adhesion complexes as cells undergo active spreading and flattening. Because these
processes proceed in parallel during initial attachment, it has been difficult to determine their interdependence.
More recently, strategies have been devised that obviate these limitations. They include the patterning of
ECM proteins on surfaces to control cell shape, while holding constant the ECM-coating density of ligands.
They also implement a simultaneous biochemical strategy to control cell spreading independently of the
total amount of ECM ligand in contact with the cell. For example, Parker et al. (2002) have shown that
confining cells to square micro-patterns results in stress fibers and FA that concentrate at the cell corners.
Additionally, Chen et al. (2003) have investigated scaling laws for the variations in the FA intensity with cell
area for similar square cells. Such techniques have recently undergone significant refinements. In particular,
Théry et al. (2006) have investigated the effect of cell shape on the distribution of actin and vinculin at fixed
cell area, exemplified by Fig. 17, which visualizes the actin and vinculin distributions in a human retinal
endothelial cell placed on a V-shaped fibronectin ligand pattern. Such studies indicate a complex interaction
among cell shape, ligand patch geometry, and cytoskeletal response with strong stress fibers forming along the
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Fig. 16. (a) Spatial distributions of the high affinity integrins at selected times after the application of the activation signal at time t ¼ 0.

(b) Magnified view of the steady-state distributions xssH around the edge of the ligand patch. Results are shown for the initial distribution

xH plotted in Fig. 14.
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non-adhesive edges and high FA densities along the edges of the ligand patch. The coupled cytoskeletal
contractility and FA model developed here is sufficiently general to enable us to make quantitative predictions
of such experiments.

An initial two-dimensional prediction based on the current model from Pathak et al. (2007) is included in
Fig. 17 which plots distributions of the high affinity integrin concentrations and distributions of the stress fiber
density or equivalently actin density. Also included with the predicted stress fiber distributions are line
segments showing the ‘‘effective’’ direction of the stress fiber. The predictions are remarkably consistent with
observations: (i) since the cell exerts maximum tractions on the ECM near the edges of the ligand patch, high
FA densities are predicted in this region and (ii) aligned stress fibers form along the non-adhesive edge; see
Pathak et al. (2007) for details and interpretation of the analysis. Finally we note that the framework presented
here is generic and can be extended to the full three-dimensional case by combining the present model with a
three–dimensional traction–separation law for receptor-ligand binding as proposed recently by Liu et al.
(2007).
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Fig. 17. Observations (averaged over 10 cells) and predictions of the (a) vinculin and (b) actin distributions in infinity telomerase-

immortalised retinal pigment epithelial human cells placed on a V-shaped fibronectin pattern. The edge of the V is 46 mm. The observations

are reproduced from Théry et al. (2006) while the predictions are from Pathak et al. (2007).
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Appendix A. Sliding of integrins over an ECM with a high density of ligand molecules

Here we propose two mechanisms to rationalize the force displacement relation for integrins sliding over an
ECM with a high density of ligand molecules.

Mechanism 1 (Fig. A1): Take as a starting point the configuration in which the high affinity integrins and
the ligand molecules form complexes in an unstretched configuration (state a). Upon applying a force the cell
membrane displaces to the right. The force reaches a peak as the high affinity integrin–ligand complexes
become highly stretched (state b). Further stretching of the complexes would decrease the forces. The chemical
potential wH is lowest when the force in the integrin–ligand complex attains its maximum (Fig. 3). It is now
energetically favorable for the high and low affinity integrins to ‘‘switch’’. Compare states b and c where (at a
fixed cell membrane displacement) the high affinity integrins dissociate from the ligand molecules and covert
to the low affinity state, while simultaneously nearby low affinity integrin molecules convert to the high
affinity state and form complexes with the ligand molecules. Further displacement of the cell membrane results
in the forces rising again (state d) and the process repeats. Thus, sliding of the cell membrane with respect to
the substrate occurs at almost constant force.

Mechanism 2 (Fig. A2): All known shear processes in solids involve geometric imperfections. They are
incapable of proceeding by rigid body displacement across the shear plane because the energy penalty is
excessive. The imperfection enables the net shear to be attained by sequential, localized displacements that
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Fig. A1. Mechanism 1 for the sliding of integrins along an ECM with a high density of ligand molecules: switching between high and low

affinity integrins.
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translate along the plane. The most comprehensively characterized is the dislocation in crystalline solids (Hirth
and Lothe, 1968). The analog for high affinity integrins (attached to the cell) shearing over the receptors on the
ECM is depicted in Fig. A2. In this depiction one integrin is in an unattached location (the dislocation), while
all others are attached. Initially, the dislocation is at the right end of the ensemble. Upon application of a force
F, the dislocation moves from right to left. Once it has exited the ensemble at the left the cell has translated
over the ECM by one unit. In order to accommodate the displacements around the dislocation, the cell must
stretch locally, as indicated by the thinning of the membrane in Fig. A2. This local stretch zone translates with
the dislocation. Since most of the integrins are bound to receptors, throughout, the cell sustains an average
force with small oscillations during each unit translation of the dislocation. While the sketch on Fig. A2
illustrates the motion of a single geometric imperfection, we note that the mechanics and physics of
dislocations in crystals provide a basis for understanding how dislocations form, multiply and allow repetitive
shear straining.
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Fig. A2. Mechanism 2 for the sliding of integrins along an ECM with a high density of ligand molecules: the dislocation type mechanism.
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Appendix B. The one-dimensional cytoskeletal model

A bio-chemo-mechanical model has been devised that captures the formation and dissociation of
stress fibers, as well as the associated generation of tension and contractility (Deshpande et al., 2006, 2007).
The stress fiber formation is initiated by a nervous impulse or a biochemical or mechanical perturbation
that triggers a signaling cascade within the cell. We model this signal as an instantaneous spike of unit
magnitude followed by an exponentially decaying pulse giving C (which may be thought of as the
concentration of Ca2+) as

C ¼ exp ð�ti=yÞ, (B.1)

where y is the decay constant and ti is the time after the onset of the most recent activation signal. The
formation of stress fibers is parameterized by an activation level, designated Z (0pZp1), defined as the ratio of
the concentration of the polymerized actin and phosphorylated myosin within a stress fiber bundle to the
maximum concentrations permitted by the biochemistry. The evolution of the stress fibers is characterized by
a first-order kinetic equation:

_Z ¼ 1� Z½ �
Ck̄f

y
� 1�

s
s0

� �
Z

k̄b

y
, (B.2)
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where the overdot denotes time-differentiation. In this formula, s is the tension in the stress fiber bundle ,
while s0�Zsmax is the corresponding isometric stress at activation level Z, with smax being the tensile stress at
full activation (Z ¼ 1). The dimensionless constants k̄f and k̄b govern the rates of stress fiber formation and
dissociation, respectively. In turn, the stress s is related to the fiber contraction/extension strain rate _� by the
cross-bridge cycling between the actin and myosin filaments. The simplified (but adequate) version of the Hill-
like (Hill, 1938) equation employed to model these dynamics is specified as

s
s0
¼

0;
_�

_�0
o�

Z
k̄v

;

1þ
k̄v

Z
_�

_�0

� �
; �

Z
k̄v

p
_�

_�0
p0

1;
_�

_�0
40;

;

8>>>>>>><
>>>>>>>:

(B.3)

where the rate sensitivity coefficient, k̄v, is the fractional reduction in fiber stress upon increasing the
shortening rate by _�0.

The constitutive description for the cell is completed by including contributions from passive elasticity,
attributed to intermediate filaments of the cytoskeleton attached to the nuclear and plasma membranes. These
act in parallel with the active elements, whereupon additive decomposition gives the total stress:

S ¼ sþ E�, (B.4)

where (for a linear passive response) E is Young’s modulus and � �
R t

0
_�dt. In Section 5, we use only this

one-dimensional version of the constitutive model that has been generalized to two and three dimensions by
Deshpande et al. (2007).

Appendix C. Details of the finite element implementation

The numerical solution of the one-dimensional adhesion problem requires the coupled solution of the
mechanical equilibrium Eq. (17) and the diffusion Eq. (19). We solve the weak forms of the partial differential
Eqs. (17) and (19) using a finite element method in an updated-Lagrangian setting and couple them using a
staggered approach as described below.

With boundary conditions u ¼ 0 and S ¼ 0 at x ¼ 0 and x ¼ Lt, respectively, the weak form of Eq. (17) at
time t is given as

b

Z Lt

0

S
qdu

qx
dx ¼ �

Z Lt

0

xHFdu dx, (C.1)

where Lt is the half-length of the cell at time t and du are arbitrary variations of the displacements u.
Similarly, using the boundary conditions �mqxL=qx ¼ 0 at x ¼ 0 and x ¼ Lt (i.e. zero flux boundary
conditions), the weak form of the diffusion Eq. (19) is written asZ Lt

0

ð1þ aÞ
qxL
qt

dxL dx ¼ �mkT

Z Lt

0

qxL
qx

qdxL
qx

dx�

Z Lt

0

ð1þ aÞxL_�dxL dx�

Z Lt

0

_axLdxL dx, (C.2)

where dxL are arbitrary variations of the concentrations of the low affinity integrins and

a � exp
mL � mH � Fþ FD

kT

� �
. (C.3)

We solve Eqs. (C.1) and (C.2) using a finite element method comprising 2-node elements with linear
interpolation functions. Time integration of Eqs. (C.1) and (C.2) is performed using a fixed time step Dt as
follows:
(i)
 Over the time step Dt, the concentrations xH are assumed to remain fixed and the stresses, displacements
and stretches D at time t+Dt obtained by solving Eq. (C.1) using a Newton–Raphson scheme. Here, the
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constitutive equations for S (as specified in Appendix B) are integrated from t to t+Dt using a adaptive
time-stepping 5th order Runge–Kutta scheme3 with an integration tolerance of ek ¼ 0.001.
(ii)
 The concentrations xH and xL are then updated over the time interval Dt by integrating the spatially
discretized version of Eq. (C.2) with an adaptive 5th order Runge–Kutta scheme again with ek ¼ 0.001. In
performing this integration we assume that the strain rate _� remains constant over the time interval Dt,
while the stretch D varies linearly from its value at t to t+Dt.
A displacement based convergence criterion given by

jcmaxjp�rjDumaxj, (C.4)

was adopted for the Newton–Raphson scheme in the solution of Eq. (C.1). Here cmax is the largest change in
the displacement degree of freedom of any node in the current Newton iteration and Dumax is the maximum
incremental change in the displacement degree of freedom of any node over the current time increment. The
tolerance er was set to 0.005 in all calculations.

Note that here we have used a staggered solution approach, where the concentrations xH are assumed to
remain fixed while integrating Eq. (C.1) over a time interval Dt. Numerical experimentation revealed that such
an approach suffices for the parameter range used in this study with time steps Dto5.0 s. Recall that the time-
scales associated with the diffusion process are much larger than those associated with the stress fiber kinetics
for the parameters employed here and thus, such a decoupling of the mechanical equilibrium equation from
the diffusion equation gives sufficiently accurate results. In all calculations presented here we employ a time
step Dto1.0 s.

Appendix D. Specification of initial conditions for a cell on a patterned substrate

The integrins distributed over the cell membrane interact with the ECM and their initial distribution
depends on the mechanical and chemical loading history that the cell has been subjected to. Here we do not
consider the details of this history but instead, given a set of cell properties, choose a set of initial conditions
that satisfy the following basic criteria:
(i)
 the low and high affinity integrins are in thermodynamic equilibrium wL�wH ¼ 0 at every point on the cell
membrane,
(ii)
 the low affinity integrins are in thermodynamic equilibrium spatially, i.e. the flux j ¼ 0 at all points on the
cell surface, and
(iii)
 the cell is in mechanical equilibrium.
In addition, we require that there are no spatial discontinuities in the concentration of the high affinity
integrins (or equivalently in the stretches D) and thus specify that the gradients qxH=qx (and qD=qx) are well
defined over the cell surface. This constraint is rationalized by noting that an ‘‘ordered’’ (or equivalently low
entropy) distribution corresponding to step changes in xH or D is unlikely to result from an arbitrary
mechanical and chemical loading of the cell for time to0 as the system is expected to maximize its entropy.
Note that these constraints do not specify a unique initial state, given a cell and substrate geometry and
material properties. Rather the mechanical and chemical loading history will determine the precise initial
conditions.

The initial conditions used in the results in Section 4.2 and plotted in Fig. 14 were obtained using the
following relaxation scheme. The cell is modeled as an elastic solid and the stretches specified as

D ¼
0; if jX jpð1� BÞLs

X � signðX Þð1� BÞLs otherwise;

(
(D.1)

where the non-dimensional parameter B varies between 0pBpDn=Ls. The corresponding densities of the
high and low affinity integrins are then given in Eqs. (20a) and (20b), respectively. Thermodynamic
umerical Recipes in FORTRAN 77, The Art of Scientific Computing, 1993, Cambridge University Press.
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equilibrium between the high and low affinity integrins requires that xH=xL ¼ a, as specified by Eq. (C.3).
A configuration in mechanical equilibrium (boundary conditions u ¼ 0 at X ¼ 0 and S ¼ 0 at X ¼ L) is then
obtained by solving Eq. (C.1) without permitting the diffusive flux of the low affinity integrins. Thus, Eq. (C.1)
reduces to

b

Z Lt

0

X qdu

qx
dx ¼ �

Z Lt

0

x0
1þ a

Fdu dx, (D.2)

with a given in Eq. (C.3) and for the elastic cell S ¼ Ee. The outcome is a system in mechanical equilibrium
but with a spatially non-uniform distribution of low affinity integrins. This system is allowed to relax by
solving the coupled mechanical equilibrium and diffusion equations as detailed in Appendix C, but with the
cell modeled as a linear elastic solid. The final initial conditions to the simulations of Section 5.2 are obtained
when a spatially uniform distribution of low affinity integrins emerges. The initial distribution of the high
affinity binders plotted in Fig. 14 is obtained using B ¼ Dn=Ls.
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