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The identification of new reactions expands our knowledge of chemical reactivity and enables new synthetic applications.
Accelerating the pace of this discovery process remains challenging. We describe a highly effective and simple platform for
screening a large number of potential chemical reactions in order to discover and optimize previously unknown catalytic
transformations, thereby revealing new chemical reactivity. Our strategy is based on labelling one of the reactants with a
polyaromatic chemical tag, which selectively undergoes a photoionization/desorption process upon laser irradiation, without
the assistance of an external matrix, and enables rapid mass spectrometric detection of any products originating from such
labelled reactants in complex reaction mixtures without any chromatographic separation. This method was successfully
used for high-throughput discovery and subsequent optimization of two previously unknown benzannulation reactions.

H
igh-throughput reaction-screening approaches that enable
rapid and accurate detection of new products with unantici-
pated structures can substantially expand our knowledge of

chemical reactivity. Although several innovative strategies to
address this general problem have been reported1–11, the develop-
ment of a highly efficient, broadly useful and preparatively simple
reaction-discovery platform remains challenging. We have recently
used matrix-assisted laser desorption/ionization and time-of-flight
mass spectrometry (MALDI–TOF–MS) to analyse chemical trans-
formations on the surface of self-assembled monolayers of alkane-
thiolates on gold12. Despite the high throughput of the primary
reaction screen and its ability to detect products with unanticipated
structures, subsequent translation of the initially identified inter-
facial reactions to preparative, solution-phase processes have often
required substantial effort.

We now describe the development of a new reaction-discovery
strategy that features not only excellent screening throughput, but
also a highly efficient translation of the initial ‘hits’ into catalytic,
synthetically useful transformations. The reactions are rapidly ana-
lysed in solution using label-assisted laser desorption/ionization
and time-of-flight mass spectrometry (LA–LDI–TOF–MS). This
simple and highly effective approach is based on the incorporation
of a readily available polyaromatic tag into the structure of a reac-
tant, thereby greatly facilitating the desorption/ionization process
and enabling rapid and selective MS analysis of hundreds of chemi-
cal reactions in solution under matrix-free conditions with excellent
efficiency. After validation of the concept by monitoring the course
of several known transformations, the technology was used to evalu-
ate the outcome of 696 different reactant combinations, and led to
the discovery of two previously unknown benzannulations.

Results and discussion
Rapid screening of chemical reactions by MALDI–TOF–MS is
attractive for two main reasons. First, the efficiency and throughput
of this approach compares favourably to the commonly used liquid
chromatography–mass spectrometry (LC–MS) and gas chromato-
graphy–mass spectrometry (GC–MS) methods, because the reaction
mixtures are analysed directly without any chromatographic frac-
tionation. Second, the high sensitivity of this technique enables

MS analysis of reactions performed on an exceedingly small scale,
enabling highly efficient miniaturization of experimental design.
Indeed, accurate analytical data can be readily obtained using only
picomoles of analyte. Despite such desirable features, development
of the solution-based MALDI–TOF–MS reaction-discovery platform
presents a substantial challenge because ionization of the matrix com-
monly used for the desorption/ionization process substantially com-
plicates accurate detection of analytes with low molecular weights. A
notable exception has been reported by Senkan, who used reson-
ance-enhanced multiphoton ionization to selectively detect benzene
in the presence of a cyclohexane13. Although this method was used
to screen a relatively small library of heterogeneous catalysts for
their ability to promote dehydrogenation, the approach is based on
the detection of a specific reaction product and is not easily applicable
to monitoring the efficiency of many other reactions.

In contrast, our main objective was to develop a broadly useful,
practical reaction-discovery platform that can be readily used to
identify and optimize a range of new chemical transformations.
We envisioned that the introduction of an appropriate MS label
into the structure of one of the reactants could promote a selective
desorption/ionization process and enable accurate detection of pro-
ducts originating from such labelled analytes, completely eliminat-
ing the need for a matrix and greatly simplifying spectral analysis
(Fig. 1a). The use of this MS labelling approach to facilitate the ion-
ization process has been recognized14–18 and used to optimize at
least two established reactions16,18, but this powerful concept
has not been used for the high-throughput discovery of new
chemical transformations.

Because commercial MALDI–TOF–MS instruments are typically
equipped with lasers that irradiate in the ultraviolet region of the
electromagnetic spectrum, the effective MS label must readily
undergo the photoionization/desorption process upon laser
irradiation, without the assistance of an external matrix. In addition,
such MS labels should be chemically inert under a range of com-
monly used reaction conditions in organic and organometallic
chemistry. It has been established that many polyaromatic com-
pounds efficiently undergo the photoionization/desorption
process upon laser-induced irradiation in the ultraviolet region, pre-
sumably due to their high molar absorptivity and ability to form
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radical cations that can be detected by MS19,20. We initially exam-
ined a range of polyaromatic compounds and identified pyrene as
an effective label for selective ionization. The progress of each reac-
tion can be readily analysed by monitoring the conversion of
MS-labelled reactant A into the expected MS-labelled product AB
in the presence of regent(s) C (Fig. 1a), enabling selective detection
of only two species in crude reaction mixtures under matrix-free
conditions. To validate the utility and generality of this method,
we analysed the progress of several known transformations.
Treatment of pyrene-containing alcohol 1 with Fmoc-protected
valine under standard esterification conditions produced the
expected ester 2 (Fig. 1b). The course of this reaction was readily
analysed by the disappearance of the peak of the reactant at m/z
274.5 (Fig. 1c) and formation of the product peak at m/z 596.6
(Mþ1). In addition to the qualitative assessment of the reaction pro-
gress, LA–LDI–TOF–MS could be used readily to quantify the con-
version of 1 to 2 by measuring the intensities of the MS peaks
corresponding to the two compounds (Fig. 1d). Having examined
several other known reactions (Supplementary Fig. S1), we clearly
established that LA–LDI–TOF–MS allows the efficient and accurate
detection of pyrene-labelled products, validating the generality
of this analytical method and setting the stage for its further
implementation to search for new chemical reactivity.

Electron-rich alkynes, especially siloxy alkynes, represent a fertile
ground for developing new carbon–carbon and carbon–heteroatom
bond-forming reactions12,21–29. Such reactions can be catalysed by a
range of transition metals, as well as Brønsted acids or bases, and
typically proceed under mild conditions. To further explore the
reactivity of this important functional group, we used the LA–
LDI–TOF–MS reaction screening platform with a pyrene-contain-
ing siloxy alkyne 3 (Fig. 2a). This labelled substrate A was treated
with 23 different reactants B as well as a negative control. Each
of the reactions was evaluated in the absence and presence of
29 individual reagents C (including a negative solvent control),

corresponding to 696 discrete experiments, which were set up in
1,2-dichloroethane at ambient temperature in a 96-well format
using a conventional robotic liquid handler. The progress of each
experiment was analysed after 1 h, 1 day and 4 days by spotting a
0.8 ml aliquot of each reaction mixture onto a standard stainless-
steel plate, as used by MALDI–TOF instruments. Following
solvent evaporation, each spot was analysed directly using LDI–
TOF–MS in positive-ion reflector mode. The high throughput of
this screening platform is noteworthy, as 696 spectra were typically
collected within 2 h by a conventional MALDI–TOF spectrometer
working in an automated data acquisition mode.

We then analysed all the MS spectra, and several reactions that
had produced unanticipated products were repeated on a larger
scale to enable their complete structural characterization by other
commonly used analytical methods. This effort identified two
benzannulation reactions that have not previously been described.
Treatment of alkyne 3 with 2-pyrone in the presence of 5 mol%
AuCl3 afforded carboxylic acid 4 withm/z 537.8, which was isolated
in 75% yield (Fig. 2b, Supplementary Fig. S2). In addition, reaction
of alkyne 3 with isoquinoline N-oxide in the presence of 10 mol%
AgNTf2 gave oxime 5 with m/z 585 in 52% yield (Fig. 2c,
Supplementary Fig. S3). Although the initial structural assignments
of 4 and 5 relied on NMR spectroscopy, the structures of both
products were ultimately secured by X-ray crystallography. It is
also noteworthy that neither of the two transformations occurred
in the absence of a catalyst, even at elevated temperatures.

Our next efforts centred on optimizing the efficiency of the trans-
formation shown in Fig. 2b. To this end, we examined several
known gold and silver complexes and monitored each experiment
using either LDI–TOF–MS or more conventional NMR spec-
trometry (Supplementary Table S1). This study demonstrated that
LA–LDI–TOF–MS could be used for rapid reaction optimization
and that gold(I) complex 8, containing highly sterically congested
Johnphos ligand, proved excellent in catalysing the reaction
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Figure 1 | Use of LA–LDI–TOF–MS to monitor the progress of a representative known reaction. a, General strategy for monitoring the progress of chemical

reactions using LA–LDI–TOF–MS, which entails labelling one of the reactants with a tag that permits matrix-free laser-induced desorption/ionization and

rapid detection of any products originating from the labelled analyte. b, Reaction scheme of a representative chemical transformation of 1 to 2, which was

studied using LA–LDI–TOF–MS. c, MS spectra for conversion of alcohol 1 to ester 2. d, Plot of relative ion intensity ratio (I2/I1) versus mole ratio (M2/M1)

(y¼0.1324xþ0.0216, R2¼0.99365). Error bars represent standard deviations. Fmoc, fluorenylmethyloxycarbonyl; DCC, dicyclohexylcarbodiimide;

DMAP, 4-dimethylaminopyridine.
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between siloxy alkynes 6 and 2-pyrones 7 to give siloxy acid 9
(Fig. 3). Subsequent one-flask desilylation with HF-pyridine
afforded the corresponding salicylic acids 10. The initial step pre-
sumably proceeded via a formal [4þ2] cycloaddition to give bicyclic
intermediate A, which underwent subsequent fragmentation of the
C–O bond and aromatization. Although 2-pyrones are known to
undergo [4þ2] cycloadditions, such reactions generally require
high temperatures and proceed typically with complete loss of
CO2 from the initially produced cycloadducts21. However, the
tandem cycloaddition/fragmentation pathway described in Fig. 3
has not been reported. This process successfully tolerated various

substitution patterns of siloxy alkynes (R1) and 2-pyrones (R2 and
R3). Reactions of unsubstituted 2-pyrone (R2¼R3¼H) with two
alkyl-substituted siloxy alkynes resulted in efficient formation of
the corresponding salicylic acids 10a and 10b. Introduction of elec-
tron-withdrawing groups (R3¼CO2Me) into the 2-pyrone structure
gave the expected benzannulation products 10c and 10d. Presence
of the aromatic substituent (R2¼Ph) was also well-tolerated and
afforded biaryl product 10e. Finally, the use of 5-chloro-2-pyrone
(R2¼Cl) allowed us to test a wide range of substitution patterns
on siloxy alkynes including various alkyl and aryl substituents. All
reactions proceeded efficiently to give the corresponding
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Figure 2 | Reaction screen using LA–LDI–TOF–MS and identification of two catalytic benzannulations. a, High-throughput screening of 696 potential

reactions. Siloxy alkyne 3 contains a pyrene tag, which enables matrix-free detection of any products originating from this compound using the LA–LDI–TOF–

MS platform. TIPS, triisopropylsilyl; Tf, trifluoromethanesulfonyl; TADDOL, (a,a,a,a-tetraaryl-1,3-dioxolane-4,5-dimethanol); acac, acetylacetonate; DMAP,

4-dimethylaminopyridine; DABCO, 1,4-diazabicyclo[2.2.2]octane; TASF, tris(dimethylamino)sulfonium difluorotrimethylsilicate; Cp, cyclopentadienyl. b, Initial

identification of the benzannulation of siloxy alkyne 3 with 2-pyrone in the presence of AuCl3 to give carboxylic acid 4. c, Initial identification of the

benzannulation of siloxy alkyne 3 with N-isoquinoline oxide in the presence of AgNTf2 to give oxime 5.
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benzannulation products 10f–l. The structures of 10a and 10e were
verified by X-ray crystallography.

Although the initial discovery of the reaction between siloxy
alkyne 3 and isoquinoline N-oxide was made using silver-based
catalyst, we found during subsequent optimization studies
(Supplementary Table S2) that the same gold(I) complex 8 proved
to be optimal for catalysing this benzannulation process (Fig. 4).
In this case, the optimization study was performed using conven-
tional NMR methods due to the high propensity for ion fragmenta-
tion of the major reaction product under LDI–TOF–MS conditions.
This process represents another example of a formal [4þ2] cyclo-
addition/fragmentation pathway, which begins presumably via the
formation of tricyclic intermediate B, followed by C–N bond frag-
mentation and aromatization to give oxime 12. Subsequent one-
flask desilylation can be efficiently achieved using tetrabutyl
ammonium fluoride (TBAF) to give 2-naphthols 13. This reaction
tolerated a wide range of substitutions of the siloxy alkyne
(R1¼alkyl), as exemplified by the efficient formation of benzannu-
lation products 13a–d. Furthermore, the use of 1-methyl isoquino-
line N-oxide (R2¼Me) afforded the corresponding naphthol
derivative 13e. Finally, a variety of halogenated isoquinoline

N-oxides successfully afforded the expected products 13f–l, repre-
senting a range of highly functionalized, synthetically useful
naphthalene derivatives. The structures of 13a and 13f were estab-
lished by X-ray crystallography.

In summary, we have described a broadly useful platform for
rapid reaction discovery. Our general approach is based on the
introduction of a polyaromatic label into the structure of one of
the reactants. As a result, any conversion of such a compound
into any other products can be monitored easily using matrix-free
LDI–TOF–MS, even in complex reaction mixtures without any
chromatographic fractionation. We demonstrated a direct appli-
cation of this screening strategy to the discovery of two benzannu-
lation reactions, which proceed via initial [4þ2] cycloaddition,
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followed by ring-opening and aromatization. Such reactions rep-
resent previously unknown modes of benzannulation reactivity of
alkynes28,29 and provide a simple and efficient synthetic entry into
substituted salicylic acids and highly functionalized naphthols. We
envision that this broadly useful reaction-discovery platform will
find a range of future applications for identification and optimiz-
ation of chemical transformations.

Methods
LA–LDI–TOF–MS reaction screen. Solutions of alkyne 3 (reactant A, 0.3 M
in 30 ml of 1,2-dichloroethane), each of the 23 reactants B (0.3 M in 8 ml of
1,2-dichloroethane) and each of the 28 reagents C (0.006–0.3 M in 3 ml of
1,2-dichloroethane) were prepared manually. Using a Perkin Elmer Multiprobe
liquid handler, 30 ml of the solution of alkyne 3 was dispensed into 696 wells in eight
96-deep-well plates (Axygen Scientific P-DW-500-C). Using the same liquid
handler, each well was treated with solutions of the 23 reactants B (30 ml per well)
and 28 reagents C (30 ml per well), as well as the negative controls for both B and C
containing only solvent, so that each well received a unique pairwise combination
of B and C to give 696 reaction mixtures. The plates were sealed with aluminium foil
and left for 1 h at room temperature. The seals were removed. Using a Perkin
Elmer Janus automated workstation equipped with a 96-channel pipetting head, a
0.8 ml aliquot of each reaction mixture was transferred onto standard stainless-steel
plates as used by MALDI–TOF instruments. The plates were allowed to air dry, and
were analysed in automatic mode on a Bruker Ultraflextreme MALDI–TOF/TOF
mass spectrometer equipped with a 355 nm Bruker smartbeam-II laser, using
the positive ion reflector mode. The reaction plates were resealed and MS analysis
was repeated after 24 h and 4 days as described.

Benzannulation of siloxy alkynes with 2-pyrones. A mixture of 2-pyrone 7
(0.15 mmol) and (Johnphos)AuNCMe-SbF6 (8, 2.5 mol%) in dichloromethane
(0.2 ml) at 0 8C was treated dropwise with siloxyalkyne 6 (1.5 equiv.) dissolved in
dichloromethane (0.3 ml) over 2 h. The reaction mixture was warmed to room
temperature and stirred until the reaction was complete (typically 2–12 h). The
solvent was removed under reduced pressure. The residue was dissolved in
dichloromethane (2.5 ml), placed in an ice bath, and treated dropwise with a
solution of HF-pyridine (0.05 ml, 70% aqueous HF and 30% pyridine). Following
warming to room temperature, the reaction mixture was treated with water (1 ml)
and extracted with ethyl acetate. The combined organic layers were dried over
anhydrous MgSO4, concentrated under reduced pressure and subjected to column
chromatography on silica gel to deliver benzannulation product 10.

Benzannulation of siloxy alkynes with isoquinoline N-oxides. A mixture of
isoquinoline N-oxide 11 (0.15 mmol) and (Johnphos)AuNCMe-SbF6 (8, 3.0 mol%)
in dichloromethane (0.3 ml) was treated with siloxyalkyne 6 (1.5 equiv.) dissolved
in dichloromethane (0.3 ml). The reaction mixture was stirred for 12 h and
concentrated under reduced pressure. The residue was dissolved in dichloromethane
(2.5 ml), placed in an ice bath, and treated dropwise with TBAF (1.1 equiv. 1 M
in tetrahydrofuran). Following warming to room temperature, the reaction mixture
was diluted with water (1 ml) and extracted with ethyl acetate. The combined
organic layers were dried over anhydrous MgSO4, concentrated under reduced
pressure, and subjected to column chromatography on silica gel to deliver
benzannulation product 13.
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